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Differentiable Linearly Transformed Cosines
for Inverse Area Light Shading
ANONYMOUS AUTHOR(S)
SUBMISSION ID: 913

Fig. 1. Our inverse rendering system captures both the BRDF material and geometry of real-world objects using active area lighting. Leveraging differentiable
LTC, the area lighting provides a broader range of BRDF samples while maintaining rendering efficiency similar to a single point light. This enables fast,
high-fidelity inverse rendering, allowing for accurate renderings of novel views under various lighting conditions.

Fully decomposing material, geometry, and lighting is particularly challeng-
ing. We propose an inverse rendering method that uses active area lighting,
where inverse area light shading is calculated using differential linearly trans-
formed cosines (LTC). Area lighting with LTC enables efficient rendering
without Monte Carlo integration while still providing a wider range of BRDF
sampling per shot than point lighting, which makes material reconstruction
more accurate. Additionally, we introduce a visibility weighting scheme
for shadows as traditional LTC methods cannot handle these. We integrate
our approach into both mesh and 3D Gaussian splatting pipelines, where it
improves BRDF reconstruction in both cases with a PSNR improvement of
>3 dB for relighting. Further, in a relighting experiment, we need 1/4 of the
input photos for the same quality than using point lights. Our experiments
show that our method outperforms state-of-the-art environment light and
point light approaches, providing superior fidelity, stability in material and
geometry reconstruction, within 15 minutes on average.

CCS Concepts: • Computing methodologies → Reconstruction.

Additional Key Words and Phrases: Inverse Rendering, Point Light, Area
Light, Linearly Transformed Cosines
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1 INTRODUCTION
Within visual computing, inverse rendering is the process of re-
covering the geometry and material of the real world from many
captured photographs by modeling light transport. Once recovered,
we can render real-world scenes and objects from arbitrary view-
points under novel lighting conditions, and edit physically-based
material appearance properties. This makes it valuable for applica-
tions like game production and extended reality. Inverse rendering
is challenging because the relationship between appearance and
physical properties is under-constrained. Ambiguities often arise
between material and lighting, where color variations caused by
lighting can be mistakenly attributed to material albedo or specu-
larity. This requires many constraints from many photographs to
resolve.
One way to reduce optimization complexity is by reducing the

degrees of freedom (DOF) in the lighting model. For example, using
controlled point lights in a dark room can produce high quality re-
sults. Within this setting, our work investigates area lights as a setup
for object capture in a dark room (Fig. 1), using an ‘active’ setting
where the light is attached to the camera to induce different angular
samplings of the surface BRDF. Per photo, point lights sample one
angle per surface point, and previous methods have used (nearly) co-
located point lights [Zhang et al. 2022a], separated point lights [Gao
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Fig. 2. Ray tracing vs. LTC . Ray tracing is noisy even when we employ
multi-importance sampling [Veach 1998] and a bilateral denoiser. We in-
crease the contrast of normal map visualization to highlight the noise.

et al. 2020; Kuang et al. 2024], polarimetric point lights [Hwang et al.
2022], or LED arrays with multiple point lights [Bi et al. 2024a; Ma
et al. 2021a]. But area lights sample multiple angles per surface point,
potentially allowing for higher quality or more e�cient capture.

We propose an area light approach that o�ers three advantages:
(1) E�cient and high quality shading: The shading of a surface point

under an area light can be approximated e�ciently using Lin-
early Transformed Cosines (LTC) [Heitz et al. 2016]. Area lights
are often rendered with expensive Monte Carlo (MC) integration
via ray tracing, but LTC integration is closed form and so can
improve reconstruction e�ciency. Its approximation is su�cient
to maintain high quality, it avoids the high memory usage as-
sociated with MC sampling during gradient calculations, and
it eliminates the noise from insu�cient MC sampling (Fig. 2).
Yaoan: We need to remove memory usage according to reviews

(2) Higher BRDF sampling e�ciency: Area lights give broader cover-
age of the 4-dimensional BRDF function space in a single capture
than point lights. Speci�cally, for specular material regions, an
area light from a �xed viewing direction emits rays that have a
higher probability of producing non-zero specular re�ections.

(3) Simplicity: Planar rectangular area lights with �at response are
now cheap to buy, so they are as easy to set up and use as a point
light. This makes it a practical choice for real-world applications.

To the best of our knowledge, no existing work uses di�erentiable
LTC for inverse rendering even though it has wide potential. Our
di�erentiable LTC method is implemented in CUDA and accommo-
dates the optimization stability issue of nearly adjacent polygonal
light vertices when clipping to the surface tangent plane. Since LTC
can only represent shading and not shadowing, we use a limited
amount of ray tracing via per-view area-guided visibility maps to
add shadowing back in a computationally-e�cient way.

To show the �exibility of our lighting method, we use it with two
inverse renderers for object reconstruction: a mesh pipeline and
a 3D Gaussian Splatting (3DGS) pipeline. For meshes, we extend
NVDi�Rec [Munkberg et al. 2022] to optimize a SVBRDF textured
mesh. For 3DGS, we extend the recent relightable 3DGS method
R3DG [Gao et al. 2023], where each Gaussian has SVBRDF parame-
ters. First, we a�x an LED area light to the camera and calibrate its
relative pose (Fig. 1). Then, we capture a set of multi-view images
and reconstruct an initial coarse geometry using o�-the-shelf pho-
togrammetry tools. Next, we use di�erentiable LTC to e�ciently

optimize the geometry and BRDF materials to match the input
photographs. Our method shows superior SVBRDF reconstruction
quality in both mesh and Gaussian pipelines to SOTA baselines.

Contributions.
� An e�cient and stable di�erentiable LTC shading algorithm for

area lights, with a visibility-aware weighting for shadows. Given
initial geometry, our inverse rendering pipeline is 5� faster than
compared neural inverse rendering methods that also use initial
geometry. Our area light approach is more sample e�cient than
point lighting, achieving higher quality from fewer samples.

� An object reconstruction pipeline using inverse rendering from
photographs that achieves high-�delity physically-based ma-
terial reconstruction and re�ned geometry reconstruction. We
show this using both mesh-based and 3DGS-based pipelines,
achieving competitive or better SVBRDF reconstruction results
compared to existing point-light-based approaches.

Assumptions and limitations.Our work does not model shading
e�ects due to interre�ection, nor e�ects from transmissive materials
like glass or highly specular mirror. Our �nal quality is dependent
upon the initial geometry, and large defects in this geometry cannot
be automatically re�ned correctly.

2 RELATED WORKS
Neural inverse renderingdecomposes scene appearance into geom-
etry, material, and lighting with neural networks from multiple
observed images. The development of NeRF [Mildenhall et al. 2021]
has spurred a series of neural inverse rendering methods based on
implicit scene representations. Some methods constrain the light-
ing of input images to an environment map [Srinivasan et al. 2021;
Zhang et al. 2021b], while others allow input images from varying
lighting environments [Boss et al. 2021a,b; Yao et al. 2022].

Accounting for global illumination, NeILF [Yao et al. 2022] in-
troduces a neural incident light �eld to model the direct and indi-
rect illumination of the scene. TensoIR [Jin et al. 2023] performs a
secondary ray tracing to compute accurate visibility and indirect
lighting, which enables accurate physically-based rendering. The
aforementioned NeRF-based methods often struggle to reconstruct
�ne geometries. To address this problem, PhySG [Zhang et al. 2021a]
utilizes a signed distance �eld (SDF) to represent scene geometry
and employs sphere tracing to achieve precise ray-geometry inter-
sections. However, this method does not take indirect illumination
into account, leading to baked-in artifacts in the predicted materials.
Lately, several SDF-based methods [Liu et al. 2023; Wu et al. 2023;
Zhang et al. 2023b, 2022b] that model global illumination have been
proposed to improve the accuracy of material-lighting decoupling.

The recent success of 3DGS in implicit scene representation has
drawn great attention in the �eld of inverse rendering [Wu et al.
2024]. Deferred shading of rasterization is applied for realistic ren-
dering and relighting. GS-IR [Liang et al. 2024] proposed a depth-
based regularization term for normal estimation and a cube map-
based baking strategy to model occlusion and indirect illumina-
tion. R3DG [Gao et al. 2023] employs a similar normal distillation
strategy, but it associates a set of spherical harmonic (SH) coe�-
cients with each Gaussian to represent indirect illumination. It uses
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Fig. 3. Our pipeline reconstructs the geometry and BRDF materials of the target object using a set of images captured in a dark room. Built upon
NVDi�recMC [Hasselgren et al. 2022], our method first reconstructs the initial geometry. The mesh with textures is then di�erentiably rasterized to the
G-bu�er. For the shading points of each pixel, we apply di�erentiable LTC to e�iciently compute its shading color. The original area light integration under
complex BRDFs is transformed linearly to achieve a closed-form solution. Next, the LTC shading color is scaled using a per-pixel visibility map to account for
shadow e�ects. Finally, the rendering loss is employed to end-to-end optimize the albedo, roughness, metallicity, and geometry.

physics-based rendering to compute the radiance of each Gaussian,
ultimately blending them to produce the �nal rendering.

Di�erent from these implicit scene representation methods, NVd-
i�rec [Munkberg et al. 2022] and NVdi�rec-MC [Hasselgren et al.
2022] directly optimize explicit meshes using a di�erentiable march-
ing cube method DMTet [Shen et al. 2021], making them more
compatible with modern graphics pipelines.

Inverse rendering with active lighting.Active lighting, which is
used to reduce the dimensionality of the optimization space, is an
e�ective way to alleviate the ambiguity in inverse rendering. Here,
we focus on neural-based methods and will not introduce traditional
active lighting methods [Gardner et al. 2003; Ghosh et al. 2009; Nam
et al. 2018; Ren et al. 2011; Riviere et al. 2014; Schmitt et al. 2020;
Wang et al. 2011; Zhou et al. 2013] in detail.

The point light assumption restricts the lighting distribution func-
tion to a Dirac delta function, allowing the integral of the rendering
process to be computed with a single sample. It signi�cantly simpli-
�es the rendering, making it one of the most common active light
sources. Bi et al. [2020b] optimize the geometry and SVBRDF of the
object by training a depth estimation network and a re�ectance es-
timation network. Subsequently, various methods combining point
lighting with di�erent scene representations have been proposed,
such as NeRF-based [Bi et al. 2020a], SDF-based [Zeng et al. 2023;
Zhang et al. 2022a], hybrid point-volumetric-based [Chung et al.
2024], 3DGS-based [Bi et al. 2024b] approaches. For avatar recon-
struction, Lu et al. [2024] and Han et al. [2024] proposed methods
to reconstruct the geometry and materials of the human body or
face from images taken with a mobile phone and �ashlight.

In addition to point lights, there are also more complex active
light con�gurations, such as LED arrays in a light stage, which
could enhance the quality of material decomposition [Kang et al.
2018, 2019]. Ma et al. [2021b] simplify the light-stage capturing
setup by using only one camera and a collocated RGB LED array.
Although the capture setup of this method is similar to ours, it sums
many point light estimates rather than directly estimating �at area
lighting, and empirically it requires high-precision initial geometry.
Zhang et al. [2023a] estimate the SVBRDF of a planar sample from
a single image captured under an RGB LCD area light and a camera
without careful calibration. Although both this method and ours

use LTC for physics-based rendering, this method is only applicable
to planar objects and requires a large amount of training data.

3 METHOD
Our method reconstructs the geometry and BRDF materials of a
target object using a set of photographs captured in a dark room
with a camera equipped with a �xed planar area light source. We
assume that the light source has a constant radiance, denoted by! ,
and that we know via calibration its relative pose with respect to the
camera [Whelan et al. 2018]. We assume an initial coarse geometry.

For e�cient inverse rendering, we introduce a di�erentiable
LTC [Heitz et al. 2016] pipeline (Section 3.1) to quickly produce
high-quality approximate shading on complex geometry and ma-
terials (Fig. 3). Since LTC ignores visibility and causes errors in
shadow areas, we use an area-guided visibility scheme to overcome
this limitation (Section 3.2). we integrate our di�erentiable LTC
method into both mesh-based and 3DGS-based inverse rendering
pipelines (Section 3.4) for fast and high-quality reconstruction.

Material representation.We follow previous work [Munkberg et al.
2022] in di�erentiable rendering and use the physically-based (PBR)
material model from Disney [Burley and Studios 2012].This lets us
easily import game assets and render our optimized models directly
in existing engines without modi�cations. It is characterized by
three key properties: albedoa 2 »0•1¼3, roughnessA2 »0•1¼, and
metallicity< 2 »0•1¼. It combines two components: a di�use term
and an isotropic specular GGX lobe [Walter et al. 2007]:

d¹x• l E• l ; º =
¹1 � < ºa

c
¸

� ¹Aº� ¹<• aº� ¹Aº
4jl E � njjl ; � nj

• (1)

where d is the BRDF,x represents the shading point,l E and l ;
denote the view (surface-to-camera) and incident light (surface-
to-light) directions, respectively, andn is the surface normal.� is
the normal distribution function (NDF) that depends on roughness,
which uses the GGX model [Trowbridge and Reitz 1975].� is the
Fresnel term and� models the shadowing e�ect between micro-
facets. Note that the simpli�ed Disney BRDF does not account for
tint, sheen, or subsurface e�ects.
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3.1 Di�erentiable Linearly Transformed Cosines
In physically-based rendering, shading with a polygonal area light
of constant radiance! requires computing the illumination integral
over the spherical domainP covered by the area light:

c? ¹x• l Eº = !
¹

P
d¹x• l E• l ; º cos\ ; dl ; • (2)

wherec? is the color of pixel?, x is the intersection point along
the view directionl E, andcos\ ; = l ; � n denotes the cosine of the
angle between the incident light direction and the surface normal.
Computing this integral typically requires Monte Carlo integration,
which typically samples many rays to achieve an accurate result.

However, we can e�ciently approximate this integral using lin-
early transformed cosines (LTC) [Heitz et al. 2016]. LTC exploits
the fact that integrals of cosine distributions have closed-form solu-
tions for polygonal light, and this distribution can be transformed
to approximate BRDFs, which results in a fast integration method
without relying on sampling and Monte Carlo integration. For a
given view direction, if a linear transformationM 2 R3� 3 can
be identi�ed to map a cosine distribution to an approximation of
the complex cosine-weighted BRDFd¹x• l E• l ; º cos\ ; . Assuming
isotropic BRDFs, and given that LTC are scale-invariant, eachM
has only 4 parameters [Heitz et al. 2016]. Its inverse transformation
M� 1 can then be used to simplify the complex integration in Eq. 2 to
a straightforward cosine distribution within the transformed spheri-
cal domainP0 = M� 1P. This transformed integration� ¹P0º admits
a closed-form analytical solution [Heitz 2017; Lambert 1760], which
equals the sum of several (signed) areas corresponding to the edges
along the light source boundary:

� ¹P0º = !
¹

P0
cos\ ; dl ;

=
!
2c

Õ

hp8•p9i 2mP0

acos¹p8 � p9º
©
­
­
«

p8 � p9

j jp8 � p9j j
�

2
6
6
6
6
6
4

0

0

1

3
7
7
7
7
7
5

ª
®
®
¬

• (3)

where mP0 denotes the boundary ofP0, andp8 and p9 are two
consecutive vertices along the boundary.

To map the cosine-weighted BRDF to the cosine distribution,
M� 1 depends on both the material and the view direction. Follow-
ing the approach of Heitz et al. [2016], for a �xed view direction,
we precomputeM for each specular term in the BRDF and view
direction at �xed intervals and store theM� 1 values. These values
are interpolated during rendering. To reduce storage requirements,
as in Heitz et al. [2016], the Fresnel term is separated from the BRDF
integral and treated as an independent factor in�uencing the BRDF
magnitude. This allowsM� 1 = M� 1¹A• Vº to depend solely on the
specular term's roughnessAand the dot product of the view direc-
tion l E and the surface normaln, denoted asV, enabling it to be
e�ciently stored in a 2D look-up table (LUT).

With linear transformationsM� 1¹A• Vº and the closed-form inte-
gration in Eq. 3, the specular components of a shading pointp can

Fig. 4. Light source clipping. We must clip the transformed polygon to the
surface tangent plane before projecting it onto the integral sphere. During
clipping, it is possible that a new vertex%12 generated from clipping is close
to another vertex%1, which causes unstable inverse rendering. We merge
such vertices to mitigate the problem.

be calculated analytically as:

cB
? = � ¹A• Vº� ¹P0º• (4)

P0 =
�
M� 1¹A• Vºp8jp8 2 P

	
• (5)

� ¹A• Vº = � 051¹A• Vº ¸ ¹ 1 � � 0º52¹A• Vº• (6)

where� 0 = 0”04¹1� < º ¸ < a is the basic re�ectance (the fraction of
light that is re�ected at normal incidence), and� ¹A• Vº compensates
for energy loss caused by the shadowing term and the omission of
the Fresnel term (including albedo and metallicity) in the �tting of
M. Speci�cally,51 is the magnitude of the BRDF, which is used as a
scale factor to compensate for the energy loss due to the shadowing
term, and52 is the factor for the Fresnel re�ectance.51 and 52 are
also precomputed and can be stored together in a second LUT.

The di�use component can be directly obtained by integrating
over the cosine distribution without linear transformation:

c3
? =

¹1 � < º0
c

� ¹Pº” (7)

The �nal rendering color using LTC is given byc;C2
? = cB

? ¸ c3
? .

LTC in autodi�. The 2D LUT tables forM� 1, 50, 51 enables us to
compute the derivative of these quantities with respect to the rough-
nessAandVthrough numerical gradients using forward di�erences.
These derivatives can be used in the chain rule for the derivative
computation in Eq. 4 to obtain the derivative of the specular com-
ponentscB

? with respect toAandV. Since the vertex positions are
used to calculate theV, the derivatives ofcB

? can be back-propagated
back to the vertex positions throughV. The derivative chain can be
analyzed forc3

? in a similar way, and the derivatives to albedo0 and
metallicity < are obtained through the basic re�ectance� 0 in the
specular and di�use components. We show the derivative chain for
di�erentiable LTC in the supplementary material.

Merging nearby light corners after clipping.During rendering, we
clip each area light polygon to the point's tangent plane. Thus, it is
possible for two clipped vertices to become close, as shown in Fig. 4.
Two close vertices can cause problems when analytically integrating
the cosine distribution over the domain of the clipped polygon using
Eq. 3. First, in the forward process, the cross product in the denomi-
nator of Eq. 3 can be near zero. Second, in the backward process, the
gradient of thearccosfunction near 1 approaches in�nity, which can
cause instability. To resolve this issue, we propose merging adjacent
pointsp8 andp9 that are too close (p8 � p9 ¡ 1 � 10� 4) during both
forward rendering and back-propagation. This causes only a minor
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Fig. 5. Visibility map F? . Without precomputed visibility, optimization
bakes contact shadows into the albedo, which hurts relighting quality.

e�ect because the contribution from the small edge between close
points to the overall rendering is small.

3.2 Area-guided visibility
While LTC can e�ciently and accurately approximate the e�ects of
complex materials and lighting, the LTC-rendered colorc;C2

? ignores
occlusion caused by geometry, resulting in biased reconstruction
outcomes such as shadows being baked into the albedo. Although
Ambient Occlusion (AO) can approximate these shadows, it assumes
uniform light intensity in all directions, leading to signi�cant er-
rors under our area light setup. To address this, we propose an
area-guided visibility weighting inspired by Heitz et al. [2018]. A
shadowed color̂c? can be decomposed into a color without visibility,
which can be approximately calculated using LTCc;C2

? , multiplied
by a visibility mapF? as following:

ĉ? ¹x• l Eº = !
¹

P
+ ¹x• l ; ºd¹x• l E• l ; º cos\ ; dl ; (8)

= F? ¹x• l Eºc? ¹x• l Eº � F? ¹x• l Eºc;C2
? ¹x• l Eº• (9)

F? ¹x• l Eº =

¯
P + ¹x• l ; ºd¹x• l E• l ; º cos\ ; dl ;

¯
P d¹x• l E• l ; º cos\ ; dl ;

• (10)

where+ ¹x• l ; º represents the visibility of incident light at the shad-
ing point x. The visibility map reduces the weight of shadowed
areas, making them contribute less to the geometry and material
estimation of certain points and largely eliminating issues like baked
shadows in albedo (Fig. 5).

The visibility mapF? can be solved numerically using ray tracing
and Monte Carlo integration. This may initially seem counter to our
goals of using LTC�why not just use ray tracing for everything?
But, we can use the visibility map solely as a weighting factor
without autodi�erentiation, allowing for e�cient implementation
using NVIDIA OptiX. For the given geometry and material, we
computeF p for each pixel in the training view using 1,024 sampled
incident raysl ; on the spherical domainP. This takes 15 seconds
for 200 input images. Further, empirically, we need only update
the visibility map every 1,000 iterations to produce good results,
which signi�cantly reduces the computational cost. Even though the
visibility map is out of date, it remains helpful during optimization
because, as we use active lighting and so as the shadow varies with
each input view, there are often notable areas of shadow that must
be e�ciently accommodated.

3.3 LTC in a mesh-based optimization
We use a triangular 3D mesh with textures to represent object geom-
etry, albedo, roughness, and metallicity maps. Once reconstructed,
a mesh with textures is easy to edit within existing digital content

creation tools. Using meshes lets us exploit hardware-accelerated dif-
ferentiable rasterization [Laine et al.2020] and hardware-accelerated
ray-tracing for e�cient shadow rays (Fig. 3.2).

We optimize the vertex positions, normal map as o�set from
the geometry normal, material parameters (albedoa, roughness
A, metallicity< ), and radiance! of the rectangular area light. For
initialization, we set albedo to be 1.0, metallicity to be 0.0, and we
randomly initialize roughness and the light radiance.

Losses.To optimize the geometry and material parameters, we
de�ne a lossL as weighted combination of the image loss and a set
of regularizer terms:

L = L render¸ _armL arm ¸ _bL b ¸ _nL n ¸ _nmL nm ¸ _ncL nc• (11)

where_ is the weight of each term. We set_arm = 0”1, _n = 0”025,
_nm = 1”0 and_nc = _b = 0”1.

The rendering lossL render measure the di�erence between cap-
tured pixel colorsc6C

? and rendered pixel colorŝc? . Given the error
introduced by visibility approximation and signi�cant indirect light-
ing in the shadowed regions, we modulate the color loss with the
visibility mapF? to reduce the gradient from these regions:

L render =

(
0• if c6C

? � ĉ? andc6C
? is overexposed•

Í
? F? j jc6C

? � ĉ? j j22• otherwise”
(12)

To handle overexposure, where colors are clamped to the maximum
value of the image format, we detect overexposed pixels by checking
if their color values reach the format's maximum (e.g., 255).

To enhance the ill-posed roughness-metallicity optimization, we
introduce a metallicity binary loss. Inspired by a suggestion from
Unreal [Epic Games 2024] for Disney principled BRDF, we add
binary loss encouraging metallicity to be either 0 or 1 for pure
surfaces such as pure metal, pure stone, pure plastic, and so on.

L b =
Õ

?
< ? � ¹1 � < ?º• (13)

where< ? is the screen-space metallicity of pixel?.
Next, we apply smoothness priors in NVdi�rec-MC [Hasselgren

et al. 2022] for albedo, specular, metallicity (L arm), surface nor-
mal (L n), and normal map textures (L nm). Additionally, we apply
the smoothness prior to! nc to enforce normal consistency across
randomly sampled adjacent triangles.

3.4 LTC in a 3DGS-based optimization
Optimizing mesh geometry without a plausible initialization can be
challenging due to issues with changing topology and avoiding self-
intersections. In contrast, 3DGS [Kerbl et al. 2023] uses 3D Gaussian
primitives as its primary rendering entity, which can be optimized
from random initialization. As a proof of concept, we integrate
our area light inverse rendering using LTC into the relightable 3D
Gaussian (R3DG) [Gao et al. 2023] pipeline. Speci�cally, we shade
each Gaussian under area lighting with LTC and derive the pixel
color by splatting the Gaussian points onto the screen.

4 EXPERIMENTS
Datasets.We use a synthetic dataset and a real captured dataset.

The synthetic data consists of four synthetic scenes (�cus, lego,
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armadillo, and hotdog) as used in TensoIR [Jin et al. 2023]. We
use Blender's Cycles renderer [Community 2018] to produce 200
training images and 200 testing images. The poses for the train-
ing and testing views are identical to those in the NeRF-synthetic
dataset [Mildenhall et al. 2021]. For evaluation, we render the train-
ing and testing data under point, area, and environment lighting.

As shown in Fig.1, our real captured data consists of eight objects
with varying materials. The capture system uses a consumer-grade
DSLR camera paired with an LED area light. We set the color tem-
perature of the area light to 5000K, which is typically considered
neutral white light. The relative pose between the camera and the
area light is calibrated by attaching an AprilTag[Olson 2011] to the
LED light and taking photos in front of a plane mirror [Whelan et al.
2018]. The size of the area light follows the speci�cations of our
lighting device (152< � 10”62<). Camera poses are computed using
RealityCapture [CapturingReality 2016]. For detailed information
on the size of each object and the number of captured images, please
refer to the supplementary material.

Geometry initialization.Our pipeline relies on initial geometry,
as do comparison methods such as TensoSDF [Li et al. 2024], NVD-
i�recMC [Hasselgren et al. 2022], IRON [Zhang et al. 2022a], and
DPIR [Chung et al. 2024] which require either initial geometry or a
geometry reconstruction stage. Although assuming constant light-
ing, we �nd that neural implicit methods like NeuS [Wang et al.
2021] and TensoSDF [Li et al. 2024] can produce satisfactory ge-
ometry in most cases under our active and dynamic lighting setup.
Consequently, we use the �rst stage (geometry reconstruction stage)
of TensoSDF [Li et al. 2024] to reconstruct the initial geometry.

After geometry reconstruction, we extract the mesh and simplify
it to 100�300k faces using Quadric Error Metric (QEM) simpli�ca-
tion [Garland and Heckbert 1997], then apply Laplacian smooth-
ing [Vollmer et al. 1999]. Next, we generate a1024� 1024texture
map in Blender [Community 2018] for both the material and normal
maps. Certain objects with highly metallic areas (Bust, Luckycat) or
metallicandlow re�ectance areas (Bottle cap) are di�cult; for these,
to de�ne the initial geometry, we capture a set of images under �xed
environment lighting (no active area lighting); this is a limitation.

Training details.During training, we use Adam [Kingma 2014] to
optimize in PyTorch [Paszke et al. 2019] with peak learning rates
of 1 � 10� 6, 0.01 for the albedo, roughness, and metallically texture
maps, and 0.03 for the radiance of the area light. We set 100 warm-up
iterations, linearly increasing the learning rate to its peak. After
that, the learning rate is exponentially decayed to10%of the peak
value during optimization. The training consists of 3k iterations,
with a batch size of 8 images, and takes an average of 11 minutes
on one RTX 3090 GPU. For the 3D Gaussian-based pipeline, we use
the same training con�guration as in R3DG [Gao et al. 2023].

Metrics.For quantitative comparisons on the BRDF estimation,
novel view synthesis, and relighting results (Tab. 1), we use Peak
Signal-to-Noise Ratio (PSNR), Structural Similarity (SSIM) [Wang
et al. 2004], and Learned Perceptual Image Patch Similarity (LPIPS)
[Zhang et al. 2018] as metrics. To assess geometry quality, we com-
pare the estimated normal maps with the ground truth using Mean
Absolute Error (MAE) and compute Chamfer distances between the
reconstructed and ground truth meshes.

Fig. 6. Real objects results. Compared to natural environment capture in
TensoSDF, our area light approach more accurately recovers PBR materials.

4.1 Comparison with the state-of-the-art
We compare our approach with four inverse rendering methods:
IRON [Zhang et al. 2022a] and DPIR [Chung et al. 2024], which use
active point lighting, and TensoSDF [Li et al.2024] and NVDi�recMC
[Hasselgren et al. 2022], which assume static environmental lighting.
As NVDi�recMC [Hasselgren et al. 2022] uses ray sampling and
Monte Carlo integration, we also modify it to incorporate active
point and area lighting without using our LTC for a more compre-
hensive comparison. For area lighting without LTC, we train with 16
samples per pixel (SPP), which is the default setting in NVDi�recMC.
Increasing the SPP signi�cantly increases the training time.

For the active lighting setting, Table 1 shows that our method sig-
ni�cantly outperforms IRON [Zhang et al. 2022a] and DPIR [Chung
et al. 2024] in terms of geometry, material, and the ability to relight
under novel environmental conditions. Additionally, the training of
our method is substantially faster by one order of magnitude.

When compared to NVDi�recMC [Hasselgren et al. 2022] for
point lighting, geometry and albedo are similar. For albedo, since
point lighting does not su�er from shadow or visibility estimation
bias, its albedo is slightly better in certain shadowed areas. However,
our LTC approach produces better results for relighting thanks to
more accurate roughnessA: NVDi�recMC causes specular areas to
appear di�use under relighting conditions (Fig. 7).

For NVDi�recMC with area lighting via ray sampling and Monte
Carlo integration, NVDi�recMC produces more plausible material
properties with 16 SPP and its relighting results are also better, albeit
with some noise due to ine�cient sampling (Fig. 2). At 16 SPP, ray
tracing is 3� slower than our approach. Increasing the number of
ray samples in the Monte Carlo integration can reduce noise but
signi�cantly increases training time and memory consumption.

Evaluation on real objects.We evaluate our method on real objects
and compare it with TensoSDF [Li et al. 2024]. In this more chal-
lenging setting, performance is generally worse and takes longer.
For real captured objects (Fig. 6), we see that TensoSDF fails to
properly decompose roughness and metallicity. Additionally, for the
albedo, since the color temperature of the environment lighting is
not calibrated, the color temperature is baked into the albedo. For
example, the albedo of the vase object exhibits cool tones, which are
in�uenced by the environment lighting. See Fig. 11 for more results.

, Vol. 1, No. 1, Article . Publication date: April 2025.


	Abstract
	1 Introduction
	2 Related works
	3 Method
	3.1 Differentiable Linearly Transformed Cosines
	3.2 Area-guided visibility
	3.3 LTC in a mesh-based optimization
	3.4 LTC in a 3DGS-based optimization

	4 Experiments
	4.1 Comparison with the state-of-the-art
	4.2 Ablation studies

	5 Conclusion
	References

