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Fig. 1. We propose a novel point-based method for live human performance capture from very sparse (e.g., four) RGBD sensors. Our method learns a hybrid
generalizable human representation (PGH), which regresses human surface points and parameterizes their geometry/texture features as 2D Gaussian surfels
via a surface implicit function and a Gaussian implicit function, respectively, and then uses surfel splatting and blending-based appearance enhancement to
create geometrically and photometrically correct novel-view videos.

High-quality real-time rendering using user-affordable capture rigs is an
essential property of human performance capture systems for real-world
applications. However, state-of-the-art performance capture methods may
not yield satisfactory rendering results under a very sparse (e.g., four) cap-
ture setting. Specifically, neural radiance field (NeRF)-based methods and 3D
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Gaussian Splatting (3DGS)-based methods tend to produce local geometry
errors for unseen performers, while occupancy field (PIFu)-based methods
often produce unrealistic rendering results. In this paper, we propose a novel
generalizable neural approach to reconstruct and render the performers
from very sparse RGBD streams in high quality. The core of our method
is a novel point-based generalizable human (PGH) representation condi-
tioned on the pixel-aligned RGBD features. The PGH representation learns
a surface implicit function for the regression of surface points and a Gauss-
ian implicit function for parameterizing the radiance fields of the regressed
surface points with 2D Gaussian surfels, and uses surfel splatting for fast
rendering. We learn this hybrid human representation via two novel net-
works. First, we propose a novel point-regressing network (PRNet) with a
depth-guided point cloud initialization (DPI) method to regress an accurate
surface point cloud based on the denoised depth information. Second, we
propose a novel neural blending-based surfel splatting network (SPNet) to
render high-quality geometries and appearances in novel views based on
the regressed surface points and high-resolution RGBD features of adjacent
views. Our method produces free-view human performance videos of 1K res-
olution at 12 fps on average. Experiments on two benchmarks show that our
method outperforms state-of-the-art human performance capture methods.

CCS Concepts: • Computing methodologies→ Image-based rendering;
Point-based models.
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1 INTRODUCTION
Human performance capture is an active research problem in the
graphics and vision communities. It aims to reconstruct and render
novel views of human-featured scenarios and is fundamental to
numerous VR/AR applications. To provide immersive user experi-
ence in daily and commercial applications (e.g., remote presence,
holographic communication, and teleconferencing), high-quality
real-time rendering with user-affordable capture rigs is an essential
property of human performance capture systems.
State-of-the-art human performance capture methods are based

on neural implicit functions, i.e., pixel-aligned implicit function
(PIFu) [Saito et al. 2019] and neural radiance field (NeRF) [Milden-
hall et al. 2020]. PIFu-based methods [Li et al. 2020a; Saito et al.
2019; Yu et al. 2021b] combine pixel-aligned image features with
the occupancy fields to reconstruct human surfaces and with the
surface color fields to model human textures. However, as they only
model the colors of the surface points, they often fail to render high-
frequency geometry/appearance details and view-dependent effects.
NeRF-based methods [Gafni et al. 2021; Gao et al. 2022; Tretschk
et al. 2021] model and render humans via colorized volumetric den-
sities and integration of radiance along rays, respectively. However,
NeRF-based methods typically suffer from shape-radiance ambigu-
ity under sparse views, and are still costly to train and render due to
their dense point sampling strategies. Recently, SAILOR [Dong et al.
2023] incorporates the occupancy fields and pixel-aligned RGBD
features into the radiance fields for modeling human surface ge-
ometries and textures. While their results are impressive, they may
still contain color artifacts and cannot be rendered in real-time. On
the other hand, 3D Gaussian Splatting (3DGS) [Kerbl et al. 2023] is
efficient for scene rendering by parameterizing scene radiance fields
with point cloud-based Gaussians. However, 3DGS also suffers from
two limitations in human performance capture. First, it cannot be
generalized to unseen performers as Gaussians are optimized per
scene. Second, it suffers from the local shape ambiguity problem,
which significantly worsens under sparse capture settings since the
Gaussian variables exceed the view number. Hence, creating high-
quality free-view human videos in real-time with sparse capture
rigs is still challenging.
In this work, we aim to address the above challenges (i.e., high-

quality, real-time, and generalizable rendering using very sparse
capture rigs) based on two observations. First, we observe that while
the explicit point clouds are efficient for rendering, they often suf-
fer from geometry/appearance inaccuracies, and neural implicit
functions can complement this limitation by learning to identify
accurate surface points and model their colors. Second, we observe
that the lack of geometric constraints on the surface of 3D Gaussian
ellipsoids causes multi-view shape ambiguities of 3D Gaussians.

The first observation inspires us to formulate an efficient and accu-
rate human representation by learning a surface implicit function to
regress accurate surface points and a Gaussian implicit function to
encode the radiance fields of regressed surface points for rendering
via point splatting. The second observation inspires us to param-
eterize the radiance fields with 2D Gaussian surfels, which allow
explicit normal and depth constraints to be derived.
Based on the above two observations, we propose a novel live

human performance capture method for high-quality reconstruction
and free-view rendering of performers, from sparse (e.g., four) RGBD
cameras, as shown in Fig. 1. Our method has two main technical
novelties. First, we propose a novel point-regressing network (PR-
Net) with a depth-guided point cloud initialization (DPI) scheme to
regress human surface points. This DPI scheme leverages denoised
depth information to obtain near-surface points in the reconstructed
visual hull, while the PRNet regresses robust surface points from
the initialization of near-surface points by learning to predict the
signed distance field (SDF) value and the shifting direction for each
sampled point. Second, we propose a novel neural blending-based
surfel splatting network (SPNet). Instead of using 3D Gaussians, we
parameterize the regressed surface points as 2DGaussian surfels and
explicitly model the normals and depths of 2D surfels. Specifically,
SPNet learns to predict the attributes (i.e., scale, normal, opacity,
and features) of each 2D Gaussian surfel based on the pixel-aligned
RGBD features of input points (where the normals are initialized
as the shifting directions predicted by PRNet). Meanwhile, SPNet
also learns to predict the depth maps of the target view via the
surfel splatting process. We provide explicit supervision for the
predicted normals and depths of 2D surfels, significantly reducing
geometric ambiguities on human surfaces. Finally, SPNet uses the
predicted depth map to query and blend high-resolution features of
the adjacent views to render the final result.

We evaluate our method on two standard human novel-view syn-
thesis benchmarks, i.e., the THuman2.0 dataset [Yu et al. 2021b] and
the real-captured dataset of SAILOR [Dong et al. 2023]. Extensive
experiments verify the effectiveness of our method for handling
diverse gestures, motions and clothing, and its superior efficiency
against existing human performance capture methods in terms of
rendering accuracy. Our method can render human free-view videos
of 1K resolution in real-time/live (12 fps on average) under acceler-
ation on a single RTX 3090 GPU card.

In summary, this work has the following main contributions:
• A novel hybrid human representation that combines the sur-
face implicit function and Gaussian implicit function for point
splatting-based rendering. This representation enables a perfor-
mance capture system to use a very sparse (e.g., four) RGBD
capture setting, while being able to handle unseen performers
and rendering 1K-resolution videos in high quality.

• A novel point-regressing network (PRNet) with a depth-guided
point cloud initialization (DPI) method to regress accurate hu-
man surface points by predicting the signed distance values and
shifting directions based on the denoised depth information.

• A novel neural blending-based surfel splatting network (SPNet)
to explicitly model the normals and depths of 2D Gaussian
surfels and incorporate high-resolution features of adjacent
views for splatting-based novel-view rendering.
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2 RELATED WORK

2.1 Monocular Human Performance Capture
Usingmonocular videos for human performance capture has become
popular since the first marker-free deep method was proposed [Xu
et al. 2018], in which a pre-computed T-pose textured template mesh
is used for each performer as a reference to model the articulated
motions and non-rigid deformations. Follow-up methods adopt the
T-pose (or A-pose) mesh as the template mesh [Dou et al. 2017, 2016;
Habermann et al. 2021, 2019, 2020; Li et al. 2021; Newcombe et al.
2015a, 2011; Su et al. 2020; Yu et al. 2018] and estimate the defor-
mations from the template mesh for the reconstruction of human
motions. Meanwhile, Xiang et al. [2020] use statistical deformation
models for textured human reconstruction, and Zhao et al. [2022c]
propose to predict the dynamic surface offsets and the texture maps
based on SMPL [Loper et al. 2015]. These template-based methods
typically fail to generalize well to unseen performers.

Recently, neural implicit functions have benefited monocular hu-
man capture significantly. One popular category of methods is the
pixel-aligned implicit function (PIFu) [Li et al. 2020a; Saito et al. 2019,
2020], which reconstructs 3D textured surfaces by learning the occu-
pancy and color fields based on pixel-aligned image features. Many
methods incorporate PIFu with depth [Li et al. 2020b; Pesavento
et al. 2024], human parsing maps [Chan et al. 2022b; Saito et al.
2020], parametric human model (e.g., SMPL [Chan et al. 2022a; Feng
et al. 2022; Xiu et al. 2022; Zheng et al. 2021] and 3DMM [Cao et al.
2022]), deformation fields [He et al. 2021; Huang et al. 2020], voxel-
alignment [He et al. 2020; Hong et al. 2021; Pesavento et al. 2024;
Zheng et al. 2021], and multi-resolution pixel-voxel-aligned features
learning [Pesavento et al. 2024]. Despite producing high-resolution
reconstruction results of 3D humans with motions, PIFu-based meth-
ods may not produce view-dependent and realistic appearances as
they only model the basic colors of limited surface points (vertices).
Another popular category of methods is based on the neural

radiance field (NeRF) [Mildenhall et al. 2020], which models volu-
metric density and color fields based on coordinates. The motions
in dynamic scenes are typically modeled by learning the deforma-
tion fields [Park et al. 2021a; Peng et al. 2023; Pumarola et al. 2021;
Tretschk et al. 2021] in a non-rigid reconstruction-and-trackingman-
ner [Newcombe et al. 2015b]. Parametric human models [Joo et al.
2018; Kocabas et al. 2020; Loper et al. 2015] and skeletons [Weng
et al. 2022] are used as templates for the construction of deforma-
tion fields in [Chen et al. 2021b; Jiang et al. 2022; Peng et al. 2021b].
Another group of NeRF-based methods [Gafni et al. 2021; Hu et al.
2023; Su et al. 2022, 2021; Xian et al. 2021] learn conditional NeRFs
to handle motions, e.g., video timestamps [Xian et al. 2021], and
latent codes and morphable face/pose models [Gafni et al. 2021].
Park et al. [2021b] combine the deformation field with the condi-
tional NeRF, and Kim et al. [2023] further introduce latent identity
and pose-conditioned codes to the HumanNeRF [Weng et al. 2022]
for a joint rendering of multiple performers.

2.2 Volumetric Human Performance Capture
Pioneered by [De Aguiar et al. 2008; Vlasic et al. 2008], a line of
methods capture human performances in a studio setting [Collet
et al. 2015; Guo et al. 2019; Işık et al. 2023; Jiakai et al. 2021; Liu

et al. 2009; Vlasic et al. 2009; Wang et al. 2021c, 2022; Zhang et al.
2022; Zhao et al. 2022a], using a dense set (tens up to hundreds) of
high-end RGB cameras [Işık et al. 2023; Wang et al. 2021c, 2022] or
RGB/IR cameras [Collet et al. 2015; Guo et al. 2019]. Despite their
success, these methods are expensive for amateur users.
A few methods are proposed to reconstruct humans using a

sparse set (less than ten) of RGB(D) cameras, based on point cloud
volume [Pang et al. 2021; Wang et al. 2024; Wu et al. 2020] and
PIFu [Dong et al. 2022, 2023; Saito et al. 2019, 2020; Shao et al. 2022a;
Yu et al. 2021b]. Among them, Function4D [Yu et al. 2021b] com-
bines a depth-based local tracking and fusion scheme with detail-
preserving PIFu for surface reconstruction/texturing. FNHR [Pang
et al. 2021] uses depth to optimize a global 3D skeleton to select
keyframes for few-shot learning, and combines point rendering and
classical mesh texturing for rendering. Wang et al. [2024] propose
to render portraits and backgrounds by constructing the depth-
tolerable Multi-layer Point Cloud volume and leveraging volumetric
rendering in novel view synthesis [Fridovich-Keil and Yu et al. 2022].
However, noisy depth or unreliable point cloud data typically in-
troduces inaccuracy into geometric/texture modeling. In contrast,
our PGH representation learns an accurate surface implicit function
through DPI and the derived supervision for PRNet. The regressed
surface points facilitate subsequent surfel-based rendering.

There are also many human rendering methods based on the gen-
eralizable NeRF [Chen et al. 2021a; Yu et al. 2021a]. Some methods
focus on modeling the deformations in NeRF by leveraging 3D body
parametric models [Gao et al. 2022; Kwon et al. 2021; Liu et al. 2021],
neural blending field and skeleton estimation [Peng et al. 2021a],
image-based rendering [Cheng et al. 2022; Kwon et al. 2023; Wang
et al. 2021b; Zhao et al. 2022b], 3D keypoint detection [Mihajlovic
et al. 2022], and pose estimation [Liu et al. 2021; Remelli et al. 2022;
Zhao et al. 2022b]. Some recent methods propose to improve the
geometry accuracy of NeRF, by jointly regressing occupancy and
densities [Shao et al. 2022b], and incorporating the depth probability
distribution [Lin et al. 2022]. Most recently, Dong et al. [2023] pro-
pose to combine PIFu and NeRF representations based on the pixel-
aligned RGBD features for surface reconstruction and appearance
rendering. Nonetheless, the costly training and inference overheads
are a fundamental limitation of using NeRF for rendering.

2.3 3D Gaussian Splatting
3DGaussian Splatting (3DGS) [Kerbl et al. 2023] has recently become
a very popular alternative to NeRF [Mildenhall et al. 2020], due
to its high efficiency. Instead of querying a dense set of points
along the ray for rendering a pixel in NeRF, 3DGS rasterizes a few
Gaussian points with independent attributes, and renders the pixel
via point-based alpha blending. As a result, 3DGS can render images
of comparable quality but is significantly faster than NeRF.
Many works immediately follow 3DGS. Some methods propose

to extend 3DGS by, e.g., improving surface reconstruction accu-
racy [Dai et al. 2024; Huang et al. 2024; Yu et al. 2024b], incorporat-
ing the deformation field for handling dynamic scenes [Wu et al.
2024; Yang et al. 2023], focusing on removing aliasing artifacts [Yan
et al. 2023; Yu et al. 2024a], and determining the minimum number of
Gaussians via Markov Chain Monte Carlo (MCMC) sampling [Kher-
admand et al. 2024]. 3DGS has also been widely adopted for various
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Fig. 2. Given a 4-view RGBD live stream captured via Azure Kinects as input: (1) we first apply a depth denoising module [Dong et al. 2023] to reduce the noise
in raw depth; (2) a Depth-guided Point Cloud Initialization (DPI) method then leverages visual hull with depth guidance to construct a volume (closed) point set,
which is near to the surface; (3) a novel Point-Regressing Network (PRNet) is proposed to learn a surface implicit function to regress the surface points; (4.1) A
Surfel Splatting network (SPNet) is proposed to parameterize the radiance field as Gaussian Surfels via learning a Gaussian implicit function; and (4.2) the
splatting outputs are further enhanced by an Appearance Blending scheme to render novel-view images in 1K resolution. Geo., Col., visi., Feat., vec., len., rot.,
cam., Func., Res. are abbreviations for Geometric, Colorimetric, visibility, Feature, vector, length, rotation, camera, Function, and Resolution, respectively.

applications, e.g., (text/image driven) 3D content generation [Abdal
et al. 2023; Liu et al. 2024; Tang et al. 2024; Yinghao et al. 2024; Zhou
et al. 2024], animatable head/human avatar reconstruction [Kocabas
et al. 2024; Lei et al. 2024; Li et al. 2024; Moreau et al. 2024; Qian
et al. 2024; Shao et al. 2024; Xu et al. 2024a; Zielonka et al. 2023],
and controllable portrait generation [Rivero et al. 2024].
There are some concurrent 3DGS-based methods proposed for

human performance capture [Hu and Liu 2024; Xu et al. 2024b;
Zheng et al. 2024]. Hu and Liu [2024] propose a monocular per-
formance capture method, which uses SMPL [Loper et al. 2015]
vertex points to initialize 3D Gaussian points in the canonical space
and transforms the initialized Gaussians to the target space via lin-
ear blend skinning (LBS) predictions. Like all the other monocular-
based methods, this method suffers from serious occlusion problems.
Xu et al. [2024b] propose a multi-view performance capture method,
which first reconstructs a point cloud using space carving [Kiriakos
and Steven 2000] and then maps it to 4D feature space using the
K-Planes method [Fridovich-Keil et al. 2023]. While they use 3DGS
to model the dynamic geometry, a hybrid appearance model combin-
ing image blending and spherical harmonics is proposed to support
pre-computation for rendering efficiency. However, this method
requires dozens of cameras to capture multi-views for reconstruc-
tion, which is expensive for casual applications. Zheng et al. [2024]
propose the GPS-Gaussian, which captures human performance
using a sparse set of eight RGB cameras. GPS-Gaussian uses RGB
images of two adjacent source views and the derived depth images
as the 3D position and color maps of 3DGS, and predicts other 3DGS
attributes (i.e., scaling factor, opacity, and rotation) in a pixel-wise

manner. The predicted Gaussian maps of source views are then de-
projected to 3D space and aggregated for rendering the target view.
However, their method tends to produce results of inaccurate local
geometry under very sparse (i.e., four views in our case) capture
settings as their stereo matching-based depth estimator assumes
that adjacent views are similar to each other in order to produce
sufficiently accurate depth maps.
This work proposes a novel point-based generalizable human

(PGH) representation for fast and high-quality human rendering
using four RGBD cameras. PGH explores the point representation for
fast rendering, and addresses its geometry/appearance ambiguities
by incorporating two novel functions, a surface implicit function
and a Gaussian implicit function, as two networks, PRNet and SPNet.

3 PROPOSED METHOD
We aim to explore Gaussian Splatting to address the challenges of
achieving high-quality, near real-time, and generalizable rendering
with very sparse capture rigs. As illustrated in Fig. 2, our system
generates photometrically correct free-view videos in near real-time
performances, from live N -view ({I𝑖 ,D𝑖 ,M𝑖 }𝑖=1,...,N ) RGBD stream
captured by Kinect-V4 sensors, where I, D andM denote the RGB,
depth and mask images, respectively, and N is set to four in our
implementation.
Our system consists of four steps: (1) Image-conditioned Depth

Denoising (F𝑑 ) [Dong et al. 2023] removes the undesirable noise
and holes in the raw captured depths. The denoised depths are
denoted as D𝑖

𝑟 𝑓
; (2) Depth-guided Point Cloud Initialization (DPI)

constructs the initial point cloud P𝑖𝑛𝑖𝑡 , by leveraging the multi-view
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Fig. 3. The Depth-guided point Cloud Initialization method. (a) Building a
closed visual hull from 4-view body mask images; (b) Leveraging depth data
to remove the extra points (purple boxes) inside the visual hull; (c) Using
a sliding voxel to filter out the inner points and obtain the outer points.
Interpolating sub-points with a length of 1/3 voxel size in the 8-diagonal
directions of each point, to upsample the filtered outer points; (d) Given
raw RGBD data, the initial surface points of two examples.

denoised depths and masks; (3) Point-Regressing Network (PRNet)
learns a surface implicit function to predict an accurate surface point
cloud P𝑠 𝑓 , with inputs P𝑖𝑛𝑖𝑡 and low-resolution RGB-N features; (4)
Blending-based Surfel Splatting Network (SPNet) learns a Gaussian
implicit function to represent the geometry and texture features as
Gaussian surfels for each surface point in P𝑠 𝑓 , and then use Gaussian
surfel splatting [Dai et al. 2024] to render the feature (F̃t), depth (D̃)
and normal (Ñ) maps at the target view. Finally, an Appearance
Blending module decodes the feature maps to a coarse RGB image,
and then uses D̃ to aggregate the neighbor-view pixel-aligned RGB-
N features to enhance rendering details.

3.1 Depth-guided Point Cloud Initialization (DPI)
Initializing a high-quality point cloud is important as it provides
effective geometric constraints and guidance for improving the
rendering efficiency of the point-based rendering methods. To this
end, we propose DPI, which builds a near-surface volume point
cloud P𝑖𝑛𝑖𝑡 based on the reliable denoised depth and the visual hull.
It leverages D𝑖

𝑟 𝑓
to remove the far-from-surface points (Fig. 3(a))

contained in the rough visual hull constructed by masksM.
Since the visual hull can express a closed geometry like the human

body, thus avoiding the missing-region problem during rendering,
we first adopt the silhouette-based visual hull [Laurentini 1994]
to convert the masks M𝑖 (𝑖 = 1, ...,N) into a full-body solid point
set, where each point 𝑝 belongs to the grid vertices of a volume V𝑐
at a resolution of 128, as shown in Fig. 3(a). However, V𝑐 cannot
accurately represent complex surface details and contains many
extra points (red dot boxes), especially under a very sparse capture

Top View

Right View

Top View

Right View

Top View

Right View Right View

Top View

(a) (b) (c)

Fig. 4. Visual examples of initial point clouds (a), regressed surface points (b),
and rendering results (c) without (first row) and with (second row) Depth-
guided Visual Hull. Our DPI can remove the far-from-surface points, improv-
ing the quality of the regressed surface points and novel-view rendering.

setting. To effectively remove these extra points and build a fine
volume V𝑓 , we utilize the depth D𝑖

𝑟 𝑓
to determine whether point

𝑝 needs to be removed according to the relative depth fetched by
projecting 𝑝 into the 𝑖-th input view, as:

V𝑓 [x] =
{ ∏N

𝑖=1 (𝑑
𝑖
𝑟 𝑓

(𝑝) − 𝑧𝑖 (𝑝) < 𝜏) V𝑐 [x] = 1
0 otherwise

, (1)

where x = 𝑖𝑑𝑥 (𝑝) is the 3D index of 𝑝 in the volume V𝑐 . 𝑧𝑖 (𝑝) and
𝑑𝑖
𝑟 𝑓

(𝑝) are the projected z-value and the sampled depth-value of
D𝑖
𝑟 𝑓

in the 𝑖-th view, respectively. 𝜏 is a depth threshold, set to 0.02
in our implementation 1.
As shown in Fig. 3(b) and Fig. 4, our depth-guided visual hull

can effectively remove the extra points (purple box, top and right
views), especially for some regions with serve occlusion, such as
arms and legs, thus reducing the number of points and producing a
better rendering result. To further retain the near-surface points and
increase the density of these points, we first propose to use a sliding
voxel of size 𝜏/𝑠 (V𝑓 ) to filter the outer points of V𝑓 , where 𝑠 (·) is
the voxel size of V, i.e., for each point 𝑝 with V𝑓 [x] = 1, if the sliding
voxel contains a point with V𝑓 [·] = 0, then the point is determined
as an outer point and retained. We then propose to upsample the
point cloud to obtain P𝑖𝑛𝑖𝑡 (Fig. 3(d)) by interpolating sub-points
with the step size of 1/3 voxel size in 8-diagonal directions for each
filtered point, to enrich the rendering details, as shown in Fig. 3(c).
We have implemented DPI with CUDA acceleration (≈6ms), which
supports processing multiple point clouds simultaneously.

3.2 Point-Regressing Network (PRNet)
To obtain an accurate surface point cloud for high-quality point-
based rendering, we propose PRNet to learn a generalizable human
signed distance field (SDF) for the initial point cloud P𝑖𝑛𝑖𝑡 , which
1We empirically found that it does not affect the performancewhen𝜏 is set to [0.02, 0.04],
which tolerates outside-surface points and covers the majority of errors in the denoised
depth maps. The performance drops when 𝜏 < 0.02 as surface points may be discarded,
while 𝜏 > 0.04 does not improve the performance (causing more far-from-surface points)
but reduces the rendering speed.
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Fig. 5. The structures of our PRNet (a) and SPNet (d). PRNet takes multi-view
RGB and Normal (denoted as RGB-N) images at 512 resolution as inputs,
and predicts the shifting direction and shifting length for each point of the
initialized point cloud. It also provides the voxel features of the regressed
surface points (c) by re-sampling the encoded global feature volume (b).
SPNet predicts the attributes (i.e., scale, Δrotation, opacity, and features) of
the regressed surface points from RGB-N images at 1K resolution to build
2D Gaussian surfels, for rendering the feature, depth, and normal maps of
the novel view via surfel splatting (e). Note that the final normal vector of a
Gaussian surfel is expressed as the resulting direction after rotating shifting
direction by a delta quaternion (f).

regresses the human-body surface points utilizing the signed dis-
tance values and the point-shifting directions. Our PRNet learns
a surface implicit function (F𝑝𝑟 ) conditioned on the pixel-aligned
RGB-N features, which provide texture and local geometric infor-
mation for fitting the surface correctly, where the input normal map
N𝑟 𝑓 is computed from the points converted by the depth D𝑟 𝑓 . As
a result, we obtain the regressed surface points P𝑠 𝑓 by moving the
initial points P𝑖𝑛𝑖𝑡 following the predicted shifting vectors. Fig. 5 (a)
illustrates the network structure of our PRNet.
3.2.1 Surface Implicit Function: F𝑝𝑟 . For a point x in point cloud
P𝑖𝑛𝑖𝑡 ,F𝑝𝑟 predicts its shifting length (i.e., signed distance value) 𝑆𝑙 (x),
and shifting direction S𝑣 (x) (unit vector outward along the human
surface), by aggregating the pixel-aligned RGB-N features. Hence,
the regressed surface point x̃, corresponding to x, can be written as:
x̃ = x + S𝑣 (x) · 𝑆𝑙 (x). In addition to the point-independent features,
considering that the point-shifting information of x is also affected
by its surrounding points, we introduce a Global Perception Mod-
ule (Fig. 5(b)) to extract the volume features G𝑖𝑛𝑖𝑡 of point cloud
P𝑖𝑛𝑖𝑡 using a 3D convolution network. We can then obtain the global
features of a point by sampling G𝑖𝑛𝑖𝑡 according to the point index.
We describe the implicit function F𝑝𝑟 as:

F𝑝𝑟 (x, I,N𝑟 𝑓 ) = 𝑓3 (G𝑖𝑛𝑖𝑡 (x), 𝑓2 (𝑓 𝑡𝑔𝑒𝑜 (x))) := 𝑆𝑙 (x), S𝑣 (x), Ft(x̃),
(2)

where 𝑓 𝑡𝑔𝑒𝑜 (x) = 𝐴𝑣𝑔({𝑓1 (W𝑖 (x), c𝑖 (x))}𝑖=1,...,N) are the multi-
view aggregated features of x.W𝑖 = 𝐸𝑔𝑒𝑜 ({I𝑖 ,N𝑖

𝑟 𝑓
}) is the RGB-N

feature map of the 𝑖-th view, and 𝐸𝑔𝑒𝑜 (·) is the PVIT network [Wang
et al. 2021d] to encode RGB-N images. For sampling the pixel-aligned
RGB-N features, we project point x to the image space to obtain the
coordinate 𝜋𝑖 (x) and fetch z-value 𝑧𝑖 of x in view 𝑖 . W𝑖 (x) is the
fetched RGB-N feature vector at 𝜋𝑖 (x) and c𝑖 (x) = [𝑧𝑖 , 𝑝𝑖 (x)], where
𝑝𝑖 (x) = 𝑡𝑎𝑛ℎ(𝜎𝑣 · (𝑑𝑖𝑟 𝑓 −𝑧

𝑖 )) is a soft-visibility signal and 𝜎𝑣 is set to
200 in our implementation.W𝑖 (x) along with c𝑖 (x) are then fed into
an 𝑀𝐿𝑃𝑜 (noted as 𝑓1), and then processed by an average pooling
operation to obtain the geometric features 𝑓 𝑡𝑔𝑒𝑜 (x). We then use an
𝑀𝐿𝑃𝑔 to prepare the input volume of 3D-CNN to obtain G𝑖𝑛𝑖𝑡 . For
sampling the voxel-aligned features, we first obtain the 3D-index of
x in volumeV𝑓 , and then use the 3D grid-sampling operation to fetch
the interpolated feature vector in G𝑖𝑛𝑖𝑡 . The sampled features are
referred to as G𝑖𝑛𝑖𝑡 (x). Finally, the post-processed point geometric
features 𝑓2 (𝑓 𝑡𝑔𝑒𝑜 (x)) by 𝑀𝐿𝑃𝑝 (noted as 𝑓2), along with the point
global features G𝑖𝑛𝑖𝑡 (x) are fed into the last 𝑀𝐿𝑃𝑓 (noted as 𝑓3)
for shifting vector querying. For the regressed surface point x̃, we
also obtain the voxel-aligned features Ft(x̃) by sampling the learned
feature volume G𝑖𝑛𝑖𝑡 (x̃), which serves as a geometric cue for the
subsequent rendering process.

3.2.2 Loss Functions for PRNet. Weadopt SDF and chamfer-distance
loss functions to supervise the learning of surface implicit function
F𝑝𝑟 . We first sample point y around the human-body surface (de-
noted as PIFuHD [Saito et al. 2020]), and compute the ground-truth
SDF value (denoted as 𝑆∗

𝑙
) between y and the 3D scanned mesh.

We then measure the difference between the predicted length 𝑆𝑙
and the ground-truth SDF value 𝑆∗

𝑙
to learn the SDF field. Besides,

we enhance the similarity of the regressed point cloud P𝑠 𝑓 to the
ground-truth point set P𝑔𝑡 (vertices of the 3D scanned mesh) by
measuring the chamfer distance between P𝑠 𝑓 and P𝑔𝑡 . The overall
loss function can be written as:

𝐿𝑝𝑟 = 𝜇𝑆 ·
∑︁
y∈𝑇

L1 (𝑆𝑙 , 𝑆∗𝑙 ) + 𝜇𝑃 · L𝑐 (P𝑠 𝑓 , P𝑔𝑡 ), (3)

where 𝑇 denotes the sampled point set. L1 and L𝑐 denote the
smooth L1 loss and chamfer-distance loss, respectively. 𝜇𝑆 and 𝜇𝑃
are the balancing weights, which are set to 1.0 and 10.0, respectively.

3.3 Blending-based Surfel Splatting Network (SPNet)
We propose SPNet to exploit the geometry friendliness and render-
ing efficiency of Gaussian surfel splatting [Dai et al. 2024], and then
enhance the rendering details based on appearance blending. Our
SPNet learns a generalizable Gaussian implicit function (F𝑠𝑝 ) for
the sparse surface points P𝑠 𝑓 , to express Gaussian-surfel attributes
conditioned on the high-resolution RGB-N features. Based on surfel
splatting, SPNet outputs the target-view depth (D̃), normal (Ñ) and
feature (F̃t) maps. Appearance blending then enhances the texture
features of F̃t pixel by pixel through the dense surface points (de-
noted as PD̃), converted from D̃, to generate the final rendering
results. Fig. 5(d) and Fig. 6 illustrate our SPNet.

3.3.1 Gaussian Implicit Function: F𝑠𝑝 . For a surface point in the set
P𝑠𝑝 , F𝑠𝑝 predicts the attributes of Gaussian surfel x̃𝑔 , i.e., 2D-scale
S𝑔 ∈ R2, opacity value 𝑜 , delta rotation ΔR ∈ R4 (quaternion) and
feature vector Ft𝑝 , by aggregating the pixel-aligned RGB-N features.
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Considering that the normal vector of the surfel x̃𝑔 is close to the
previous shifting direction S𝑣 (x), we propose to express its normal
vector as the resulting direction after rotating S𝑣 (x) by ΔR (refer
to Fig. 5(f)), as:𝑀 (ΔR) · S𝑣 (x), where𝑀 (·) denotes the function of
quaternion to rotation matrix. Learning a residual rotation facilitates
the PRNet via reducing the complexity of the implicit function F𝑠𝑝
and suppressing the geometry and rendering errors (Fig. 13(d)).

In addition to use S𝑣 , our F𝑠𝑝 also uses the encoded feature map
W𝑖 and the resampled point global features Ft(x̃), to introduce the
geometric constraints for further reducing the model complexity of
learning Gaussian attributes. F𝑠𝑝 can be written as:

F𝑠𝑝 (x̃, I,N𝑟 𝑓 ) = [𝑓5 (𝑓 𝑡𝑢 ), 𝑓6 ({𝑓 𝑡𝑢 , 𝑓 𝑡𝑖𝑔,Δd𝑖 })] := [{S𝑔,ΔR, 𝑜}, 𝜔𝑖 ],
(4)

where 𝑓 𝑡𝑖𝑔 = 𝑓4 ({W𝑖 (x̃), c𝑖 (x̃), Ft(x̃)}) are the resampled geomet-
ric features of point x̃. 𝑓 𝑡𝑢 = H(𝐶𝑜𝑛𝑐𝑎𝑡 ({𝑓 𝑡𝑖𝑔,C𝑖 (x̃)})𝑖=1,...,N) are
the fused geometric and colorimetric features of x̃, where C𝑖 =

𝐸𝑐 ({I𝑖 ,N𝑖
𝑟 𝑓
}) is the high-resolution RGB-N feature map in view 𝑖 ,

and 𝐸𝑐 (·) is a UNet-like encoder. C𝑖 (x̃) is the fetched RGB-N feature
vector, andH denotes the transformer encoder [Vaswani et al. 2017]
with hydra attention blocks [Bolya et al. 2023]. The𝑀𝐿𝑃𝐺 (noted as
𝑓5) and𝑀𝐿𝑃𝜔 (noted as 𝑓6) are used to decode Gaussian attributes
and fusion weight 𝜔𝑖 (x̃), respectively. The surface point features
are the weighted sum of C𝑖 (x̃), i.e., ∑𝑖 𝜔

𝑖 · C𝑖 (x̃), denoted as F̃.
For novel-view rendering, we use the alpha-blending function,

consistent with that of 3DGS [Kerbl et al. 2023], to obtain the target
feature vector of each pixel u in image space, as:

F̃t(u) =
𝑛∑︁
𝑖=1

𝑇𝑖𝛼𝑖 F̃𝑖 , 𝑇𝑖 =
∏
𝑗<𝑖

(1 − 𝛼 𝑗 ), (5)

where 𝛼𝑖 is the alpha-blending weight, which is the product of the
predicted opacity value 𝑜𝑖 and a Gaussian weight [Kerbl et al. 2023].
𝑛 is the number of Gaussian surfels hit by the emitted ray of pixel
u. F̃t(u) is the feature vector of feature map F̃t located at pixel u.

We also compute depth value D̃(u) and normal vector Ñ(u) as:

Ñ(u) = 𝑤
𝑛∑︁
𝑖=1

𝑇𝑖𝛼𝑖 ·𝑀 (ΔR𝑖 ) · S𝑣 (x𝑖 ), D̃(u) = 𝑤
𝑛∑︁
𝑖=1

𝑇𝑖𝛼𝑖𝑑𝑖 (u), (6)

where𝑤 = 1/(1 −𝑇𝑛+1) is the normalizing weight for the blending
weight𝑇𝑖𝛼𝑖 , referring to [Dai et al. 2024].𝑀 (ΔR𝑖 ) ·S𝑣 (x𝑖 ) is the final
normal vector of the Gaussian surfel x̃𝑔 . 𝑑𝑖 (u) is the camera-space
depth value of the ray-surfel intersected point.
3.3.2 Appearance Blending: B. We propose an appearance blend-
ing scheme in SPNet to use the dense surface points PD̃, which
is converted from depth D̃ using back-projection, to enhance the
target-view texture details pixel by pixel. Fig. 6 illustrates the de-
tailed structure of our blending scheme.

For a target view 𝑡 , we first obtain its two adjacent high-resolution
RGB-N feature maps, C𝑛0 and C𝑛1 , where 𝑛0 and 𝑛1 are the view
indices. We then project a point y ∈ PD̃ (corresponding to the pixel
u in view 𝑡 ) into the two views, to fetch the pixel-aligned RGB-
N features (C𝑛0 (y) and C𝑛1 (y)), z-values (𝑧𝑛0

y and 𝑧𝑛1
y ), and depth

values (D𝑛0
𝑠𝑝 (y) and D𝑛1

𝑠𝑝 (y)). Here, 𝑧𝑖y is the projected depth of the
point y in view 𝑖 , and D𝑖

𝑠𝑝 (y) is the depth value sampled from the
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2D coordinate 𝜋𝑖 (y) in the depth map D𝑖
𝑠𝑝 , where D𝑖

𝑠𝑝 is computed
using the surfel splatting equation (Eq. 6).
Based on the obtained depths 𝑧𝑖y and D𝑖

𝑠𝑝 (y), we can compute
a soft visibility map O𝑖 , as: O𝑖 [u] = exp (−𝜆𝑠 · (𝑧𝑖y − D𝑖

𝑠𝑝 (y))2),
where 𝜆𝑠 is a weight coefficient determined by depth units (set to
800 in our implementation). As shown in Fig. 7, O𝑖 [u] tends to be 1
when y is visible in view 𝑖 , and 0 otherwise. Based on the fetched
features C𝑖 (y), we can get two warped feature maps, 𝑓 𝑡𝑖 , where
𝑓 𝑡𝑖 [u] = C𝑖 (y). Considering that the blending weight is affected
by the angle distances between views 𝑛0 and 𝑡 and between views
𝑛1 and 𝑡 , we also introduce the 𝑐𝑜𝑠 map, denoted as Cos𝑖 , to model
this view-sweeping effect, and Cos𝑖 [u] = (®v𝑡y · ®v𝑖y)2, where ®v𝑖y is
the normalized viewing direction of y in view 𝑖 . For the appear-
ance blending network, we first decode the feature map F̃t using
a convolution network 𝐷𝑐 to obtain the coarse RGB image C̃, and
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Fig. 8. Visualization of our point cloud and rendering results. One-of-four
raw RGBD inputs (a), our initialized point cloud (b), the surface point cloud
obtained through our PRNet (c), the normal maps obtained by surfel splatting
in our SPNet (d), our final rendering results (e). The novel-view rendering
gallery over a time period (bottom row).

then feed two-view maps 𝑓 𝑡𝑖 , O𝑖 and Cos𝑖 to a CNN to obtain the
neighbor-view weighing features. The features are fed into another
CNN with spatial and channel attention [Woo et al. 2018]. After
being enhanced by the target-view features, the CNN predicts the
blending weight mapsW = [𝜔𝑡 , 𝜔𝑛0 , 𝜔𝑛1 ], expressed as:

W = 𝑐1 ( 𝐶𝑜𝑛𝑐𝑎𝑡 (𝑐0 ({𝑓 𝑡𝑖 ,O𝑖 ,Cos𝑖 }𝑖=𝑛0,𝑛1 ), {F̃t, C̃, Ñ}) ). (7)

W is then used to blend the warped features and the splatting fea-
tures. The enhanced rendering result C̃𝑒 is obtained via: 𝑐2 (W ·
[𝑓 𝑡𝑛0 , 𝑓 𝑡𝑛1 , F̃t]), where 𝑐0, 𝑐1, 𝑐2 are three convolutional networks.
3.3.3 Loss Functions for SPNet. We adopt the photometric, depth-
prior, and normal-prior loss functions to supervise our SPNet.
1) Photometric Loss 𝐿𝑝 . We penalize the per-pixel color error be-
tween the ground-truth RGB image (denoted as C∗) and the coarse
RGB image C̃, and between C∗ and the enhanced RGB image C̃𝑒 , as:

𝐿𝑝 = 𝜆𝑐 · L𝑔 (C̃,C∗) + 𝜆𝑒 · ( L𝑔 (C̃𝑒 ,C∗) + 𝜆𝑣𝑔𝑔 · L𝑣𝑔𝑔 (C̃𝑒 ,C∗) ), (8)

where L𝑔 is the rendering loss following 3DGS [Kerbl et al. 2023].
L𝑣𝑔𝑔 is a perceptual loss used for C̃𝑒 , which computes the 𝐿1 loss
between VGG features. 𝜆𝑐 and 𝜆𝑒 are two-stage weights, set to 0.85
and 1.0, respectively. 𝜆𝑣𝑔𝑔 is set to 0.01.
2) Depth Consistency Loss 𝐿𝑑 . 𝐿𝑑 penalizes the per-pixel depth
error between the ground-truth depth map (denoted as D∗) and D̃:

𝐿𝑑 = L1 ( D̃,D∗ ), (9)

where L1 denotes the L1 loss. 𝐿𝑑 is an important term that provides
geometric constraints for F𝑠𝑝 and appearance blending (Fig. 13(b)).
3) Normal Consistency Loss 𝐿𝑛 . 𝐿𝑛 penalizes the per-pixel normal
error between the Ñ and monocular normal map N∗ (transformed

Table 1. The running time for each stage of our rendering system 𝑤/𝑜 and
𝑤/(using a single RTX 3090 GPU) acceleration is reported. The overall speed
increased by ≈ 4 times with acceleration.

Stages Operations Time𝑤/𝑜 acc. Time𝑤/ acc.
F𝑑 Depth denoising ≈ 55.4ms ≈ 16.5ms
DPI Depth-guided point cloud P𝑖𝑛𝑖𝑡 initialization ≈ 5.9ms -

PVIT
Encoding down-sampled RGB-N

images in PRNet ≈ 20.4ms ≈ 9.5ms

UNet
Encoding high-resolution RGB-N

images in SPNet ≈ 42.3ms ≈ 9.7ms

F𝑝𝑟 Predicting shifting lengths and directions for P𝑖𝑛𝑖𝑡 ≈ 28.8ms ≈ 9.2ms
1) UNet3D Encoding 3D volume features ≈ 23.9ms ≈ 5.6ms

2)𝑀𝐿𝑃𝑔𝑒𝑜
Decoding the pixel-aligned features and

outputting shifting properties to regress P𝑠 𝑓
≈ 4.9ms ≈ 3.6ms

F𝑠𝑝
Predicting Gaussian surfel attributes for P𝑠 𝑓

based on pixel-aligned features ≈ 16.9ms ≈ 14.8ms

Splatting
Gaussian surfel splatting to obtain

feature, depth and normal maps in target view ≈ 1.9ms -

𝐷𝑐 Decoding coarse RGB image ≈ 2.2ms ≈ 0.7ms
B Appearance enhancement via neural blending ≈ 157.9ms ≈ 17.6ms

Total - ≈ 331.7ms ≈ 83.9ms

from D∗) with angular and L1 losses, as:

𝐿𝑛 = L1 ( Ñ,N∗ ) + L1 ( 1, Ñ(u)𝑇N∗ (u) ), (10)

where N∗ (u) and N(u) denote the ground-truth (denoted as GT)
and predicted normal vector, respectively, at pixel u. The overall loss
for our SPNet is defined as: 𝐿𝑝 + 𝜆𝑑𝐿𝑑 + 𝜆𝑛𝐿𝑛 , where the balancing
weights 𝜆𝑑 and 𝜆𝑛 are set to 0.8 and 0.5, respectively.

4 EXPERIMENTS

4.1 Implementation Details
We have implemented our human performance capture system
under the Pytorch 1.8.0 framework [Paszke et al. 2017] and CUDA
11.1 acceleration. Our model is trained by using two RTX 3090
GPU cards with the Adam [Kingma and Ba 2014] optimizer. The
resolution of the input RGBD videos and the rendering results is 1K.

Training and Evaluation Details. We train our model (i.e., PRNet
and SPNet) using the public THuman2.0 [Yu et al. 2021b] dataset,
which is split into training and test sets with a ratio of 4:1. We render
60-view RGBD and mask images uniformly for each 3D scan, and
randomly select 4-view images spaced approximately 90 degrees
as input. We then select 1-view images from the remaining views
as the target. For the input raw depth maps, we follow [Dong et al.
2023] to simulate sensor noises on GT depth D∗ to generate D.
We train our PRNet using the sampled 3D points (2𝑒4) around

each scan with ground-truth SDF values, to calculate the SDF loss,
and together with the initial point set P𝑖𝑛𝑖𝑡 from DPI, to calculate
the chamfer-distance loss (see Eq. 3). The input RGB-N images for
encoder PVIT are of resolution 5122. The PRNet is trained for ten
epochs with a batch size of two, and a learning rate of 5𝑒−4 (the
exponential decay rate is 0.95). After regressing the surface point
set P𝑠 𝑓 , we train our SPNet with the ground truth target-view RGBD-
N images (i.e., C∗,D∗ and N∗). The input RGB-N images are of
resolution 1K2 for the UNet encoder. We first warm up the Gaussian
implicit function F𝑠𝑝 without appearance blending for ten epochs
with a batch size of two and learning rate of 2𝑒−4. We then fine-tune
the SPNet with the blending for five epochs, under a batch size of
one and a learning rate of 1𝑒−4 (0.95 for the exponential decay rate).
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OursSAILORGPS-Gaussian
(6 views)SHERF(impl.) Ground TruthPIFu (RGBD)NPBG++IBRNetKeypointNeRF

Fig. 9. Visual comparisons with SOTA methods, including KeypointNeRF [Mihajlovic et al. 2022], IBRNet [Wang et al. 2021b], NPBG++ [Rakhimov et al. 2022],
PIFu(RGBD) [Saito et al. 2019], SHERF [Hu et al. 2023], GPS-Gaussian [Zheng et al. 2024], and SAILOR [Dong et al. 2023], on the THuman2.0 dataset.

Table 2. Comparisons of rendering results on the THuman2.0 Dataset [Yu
et al. 2021b]. All competing methods are re-trained or fine-tuned for a fair
evaluation. We report the average rendering time of 1K frames using a
single RTX 3090 GPU. ∗: we report GPS-Gaussian’s inference speed w/o
acceleration (no available accelerated model). The best and second best
results are marked in bold and underline, respectively.

Methods Avg Time (s)↓ THuman2.0 Dataset [Yu et al. 2021b]

PSNR ↑ SSIM ↑ LPIPS ×10−1 ↓ MAE×10−2 ↓
PixelNeRF ≈ 390.0 30.215 0.938 1.179 0.865
IBRNet ≈ 25.7 34.469 0.963 0.742 0.497

MPSNeRF ≈ 32.2 30.317 0.945 0.866 0.754
NHP ≈ 102.5 31.488 0.957 0.851 0.647

KeypointNeRF ≈ 52.3 31.590 0.953 0.746 0.658
SHERF (impl.) ≈ 1.95 32.339 0.957 0.692 0.575
SHERF (expl.) ≈ 4.2 32.085 0.953 0.604 0.596
LGM (N=4) ≈ 0.15 29.844 0.943 0.508 0.844

GPS-Gaussian∗ (N=6) ≈ 0.17 33.132 0.969 0.468 0.427
NPBG++ ≈ 5.5 32.136 0.962 0.558 0.533

PIFu(RGBD) ≈ 8.5 33.296 0.967 0.270 0.543
SAILOR ≈ 0.2 34.882 0.969 0.354 0.392
Ours ≈0.08 35.158 0.972 0.365 0.336

We evaluate our rendering performance on the test set of THu-
man2.0 [Yu et al. 2021b] dataset and the real-captured dataset of
SAILOR [Dong et al. 2023]. For the THuman2.0 test set, we generate
noise of five different degrees on the ground truth depth, following
SAILOR [2023], to evaluate rendering quality. For the real-captured
dataset, we use RGBD images of four fixed perspective views (the
view indexes are 4,6,7,0) as inputs. The remaining four views (in-
dexes of 1,2,3,5) are used to evaluate the rendering quality. Fig. 8
shows some of our point clouds and rendering results on this dataset.

Network Details. The depth denoising network F𝑑 is implemented
based on HRNetV2-W18-Small-v2 [Wang et al. 2021a], following

SAILOR [Dong et al. 2023]. In PRNet, we use the PVTv2-B0 [Wang
et al. 2021d] as backbone (trained from scratch), along with four
CBAM [Woo et al. 2018] blocks and two convolutional layers to
extract geometric features (of dimension 128 × 128 × 32). The UNet
encoder in SPNet uses two convolutional layers with bilinear upsam-
plings and skip connections, to obtain texture features (of dimension
1𝐾 × 1𝐾 × 16). The numbers of neurons in MLPs of the Surface and
Gaussian Implicit Functions are set as follows:𝑀𝐿𝑃𝑜 ∈ (37, 64, 32),
𝑀𝐿𝑃𝑔 ∈ (32, 16), 𝑀𝐿𝑃𝑝 ∈ (32, 32, 16), 𝑀𝐿𝑃𝑓 ∈ (32, 5), 𝑀𝐿𝑃𝑡 ∈
(51, 64, 16), 𝑀𝐿𝑃𝐺 ∈ (32, 16, 7), and 𝑀𝐿𝑃𝑤 ∈ (52, 64, 32, 1). The
3D-CNN in PRNet uses the 3D UNet structure with 3 × 3 × 3 convo-
lutional kernels. The feature dimensions of the blending network
are set to (36, 32, 16), (35, 32, 16), and (19, 16, 3), respectively.
Accelerated Rendering System. We follow SAILOR [Dong et al. 2023]
to accelerate our method to achieve a near-real-time rendering
speed on a single RTX 3090 GPU card. Specifically, for all the en-
coders/decoders based on convolutional network, i.e., F𝑑 (Depth
Denoising), 𝐸𝑑 (PVIT-based RGB-N encoder), 𝐸𝑐 (UNet-based RGB-
N encoder), 𝐷𝑐 (Coarse RGB decoder), B (appearance blending net-
work), 3D-CNN (volume feature decoder), we use TensorRT with
half-precision to accelerate and convert them into the executable
models. Besides, we adopt the fully-fused [Müller et al. 2021] tech-
nique to quantify all the MLPs and the hydra attention block into
independent GPU kernels for acceleration. Finally, we implemented
DPI, point projection, feature warping, and other operations using
CUDA. Tab. 1 reports the time costs of all the operations in our
rendering system, and Fig. 15 visualizes our running system. Our
method under acceleration takes about 84ms (around 12 fps) to
render a novel view image from GPU-loaded 4-view RGBD frames.
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4.2 Main Results
4.2.1 Comparisons on the THuman2.0 Dataset. We compare to
eleven state-of-the-art methods, on our test dataset (test part of the
THuman2.0 dataset [Yu et al. 2021b]), including six RGB-based meth-
ods (i.e., PixelNeRF [Yu et al. 2021a], IBRNet [Wang et al. 2021b], MP-
SNeRF [Gao et al. 2022], NHP [Kwon et al. 2021], KeypointNeRF [Mi-
hajlovic et al. 2022], and SHERF [Hu et al. 2023]), three RGBD-based
methods (i.e., PIFu(RGBD) [Saito et al. 2019], NPBG++ [Rakhimov
et al. 2022], and SAILOR [Dong et al. 2023]), and two concurrent
3DGS [Kerbl et al. 2023]-based works (i.e., LGM [Tang et al. 2024]
and GPS-Gaussian [Zheng et al. 2024]). For fair comparisons, we
either re-train (unavailable pre-trained weights) or fine-tune (avail-
able pre-trained weights) all these methods on the training set of
THuman2.0. As SHERF [Hu et al. 2023] is a monocular method, we
use SHERF to render novel-view images in two ways. First, we al-
ways select one view (out of four) that is closest to the target view
as the input, which implicitly leverages multi-view information (de-
noted as “SHERF (impl.)”). Second, we modify and re-train SHERF
to aggregate 4-view explicitly (denoted as “SHERF (expl.)”). Since
GPS-Gaussian [Zheng et al. 2024] does not work under our very
sparse (i.e., four views) setting (input images are over-cropped due
to stereo rectify), we fine-tune GPS-Gaussian [Zheng et al. 2024] to
use six (at least) input views. We measure the rendering accuracy
using the PSNR, SSIM, MAE, and LPIPS [Zhang et al. 2018] metrics.

Tab. 2 reports the quantitative results. We can see that our method
generally outperforms existing rendering methods on all three objec-
tive metrics (i.e., PSNR, SSIM, and MAE), while achieving a slightly
lower LPIPS score compared with PIFu (RGBD) [Saito et al. 2019]
and SAILOR [Dong et al. 2023]. We summarize the average inference
times of all methods in rendering an image of 1K resolution using
a single RTX 3090 GPU, which shows that our method runs faster
than existing rendering approaches.
In addition, we demonstrate the accurate geometry of our re-

gressed surface points in Tab. 3, by comparing to the triangle vertices
of reconstructedmesh (GTPIFu [Dong et al. 2022] and SAILOR [Dong
et al. 2023]), and the fused point clouds (GPS-Gaussian [Zheng et al.
2024] and LGM [Tang et al. 2024]), based on the Chamfer/𝑃2𝑆 dis-
tance (the lower the better). Our results perform better than theirs.
The visual comparisons in Fig. 10 show that our method produces
more robust surface points, mainly benefiting from SDF/Chamfer
supervision. Although the vertices provided by SAILOR [Dong et al.
2023] and GTPIFu [Dong et al. 2022] contain more high-frequency
details, they may introduce larger geometric deviations (e.g., clothes
in boxes), thus affecting subsequent surfel-based rendering.
Fig. 9 shows the qualitative rendering accuracy comparisons.

IBRNet [Wang et al. 2021b] relies on the colorimetric inputs from
adjacent views. It tends to produce obvious topological and texture
errors, for querying views far from the input views. The results
of KeypointNeRF [Mihajlovic et al. 2022] suffer from incomplete
shapes and incorrect textures in the regions with occlusions or
large/complex motions, due to their insufficient topological con-
straints by using sparse 3D keypoints. By using point clouds to
represent 3D humans, NPBG++ [Rakhimov et al. 2022] may produce
slightly better results. However, they still suffer from missing parts,
inaccurate shapes, and low-quality textures due to the noisy and

SAILOR GTPIFu OursLGM

Ground Truth

Our RenderingIPNet

SAILOR GTPIFu OursLGM GPS-Gaussian
(6 views)

Fig. 10. Visual comparisons between our regressed surface points and those
points/vertices produced by existing methods, on the THuman2.0 (first two
rows) and real-captured (bottom row) dataset. Zoom in to view details.

Table 3. Geometric comparisons between our regressed surface points and
those produced by GPS-Gaussian [Zheng et al. 2024], LGM [Tang et al.
2024], GTPIFu [Dong et al. 2022] and SAILOR [Dong et al. 2023]. The best
and second best results are marked in bold and underline, respectively.

Index Methods (THuman2.0 Dataset [Yu et al. 2021b])

GPS-Gaussian (N=6) LGM GTPIFu (N=4) SAILOR Ours
Chamfer ×10−2 ↓ 0.982 3.996 0.922 0.975 0.801

P2S ×10−2 ↓ 0.920 3.942 0.817 0.807 0.715

unstructured point clouds. PIFu (RGBD) [Saito et al. 2019] learns
surface fields with pixel-aligned RGBD features for reconstruction.
However, inaccurate raw depths can cause missing parts and the
lack of high-frequency details, further degrading their texture qual-
ity. SHERF (impl.) [Hu et al. 2023] combines SMPL [Loper et al.
2015] with a hierarchical feature bank to represent 3D humans.
Their results may contain incorrect/incomplete local shapes (e.g.,
clothes) and wrong textures, due to the limited SMPL representation.
SAILOR [Dong et al. 2023] combines PIFu and NeRF for reconstruc-
tion and rendering. While their results are generally better than
previous methods, we can still observe over-smoothed surfaces and
blurry textures in local regions. On the other hand, despite using
six input views, the 3DGS-based GPS-Gaussian [Zheng et al. 2024]
may produce obvious incomplete or distorted shapes and sometimes
color artifacts in their textures. In contrast, our method can render
results with accurate shapes and high-quality texture details.

4.2.2 Comparisons on the SAILOR Dataset. Tab. 4 reports the quan-
titative results of our method and eight best-performing methods
based on their efficiencies on the real-captured dataset (containing
ten independent performerswith differentmotions) of SAILOR [Dong
et al. 2023]. They are RGB-based methods (including IBRNet [Wang
et al. 2021b], MPSNeRF [Gao et al. 2022], NHP [Kwon et al. 2021],
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1 of  4-view
 RGBD MPSNeRF NHP SHERF (expl.) NPBG++ SAILOR Ours Ground Truth

Another 
Novel View

Fig. 11. Visual comparisons of our method with SOTA methods, including MPSNeRF [Gao et al. 2022], NHP [Kwon et al. 2021], SHERF [Hu et al. 2023],
NPBG++ [Rakhimov et al. 2022], and SAILOR [Dong et al. 2023], on the real-captured SAILOR dataset [Dong et al. 2023].

and SHERF [Hu et al. 2023]), and RGBD-based methods (includ-
ing NPBG++ [Rakhimov et al. 2022], PIFu (RGBD) [Saito et al.
2019], the re-implemented Function4D [Yu et al. 2021b] (denoted
as F4D (re-impl.)), and SAILOR [Dong et al. 2023]). Note that GPS-
Gaussian [Zheng et al. 2024] cannot be trained on this dataset, as
its stereo rectify during depth estimation requires any two adjacent
input views to have no more than 60◦, while the training part of
SAILOR dataset contains at least two adjacent views with 90◦. We
implemented F4D (re-impl.) [Yu et al. 2021b] by tracking the former
and latter frames of the current frame and fusing the multi-frame
point clouds to produce new input depth maps, which are fed into
a PIFu model for geometric/texture modeling. Tab. 4 demonstrates
that our method generally outperforms these competing methods.
Fig. 11 shows four examples of the visual comparisons. We can

see that the SMPL-based methods, MPSNeRF [Gao et al. 2022],
NHP [Kwon et al. 2021], and SHERF [Hu et al. 2023] (expl.), tend to
produce topological errors and incorrect textures, as SMPL-based
models can only represent naked human bodies. Meanwhile, for
the RGBD-based methods, NPBG++ [Rakhimov et al. 2022] tends
to produce obvious geometry errors, including incomplete and dis-
torted shapes, due to the unavoidable noise in raw point clouds, and
the results from SAILOR [Dong et al. 2023] contain blurry textures
and sometimes color artifacts. In contrast, our method combines
surface implicit function and Gaussian implicit function to enable

OursF4D (re-impl.)GTPIFu

~23.5s (texturing)

~26.8s (texturing) ~0.08s (rendering)

Fig. 12. Comparisons of our 3D reconstruction (surface points) and novel-
view rendering results, with GTPIFu [Dong et al. 2022] and the re-
implemented F4D [Yu et al. 2021b] on the real-captured dataset.

effective reconstruction and rendering of 3D humans with accurate
geometries and fine-grained textures. These experiments overall
demonstrate that our method can render high-quality novel-view
images for diverse performers.
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Table 4. Comparisons of rendering results produced by our method and existing methods on the real-captured dataset of SAILOR [Dong et al. 2023]. All
competing methods are re-trained or fine-tuned for fair evaluation. The best and second best results are marked in bold and underline, respectively.

Dataset (size) of SAILOR Index Methods

IBRNet MPSNeRF NHP NPBG++ PIFu(RGBD) SHERF(impl.) SHERF(expl.) F4D(re-impl.) SAILOR Ours

Rocking & Walking (230)
PSNR ↑ 28.344 27.930 28.486 27.769 28.448 27.936 28.504 28.446 30.920 30.952
SSIM ↑ 0.934 0.928 0.938 0.932 0.948 0.934 0.937 0.950 0.965 0.961
LPIPS ↓ 0.121 0.114 0.113 0.0964 0.0688 0.118 0.0997 0.0686 0.0451 0.0555

Kung Fu (230)
PSNR ↑ 24.131 22.760 22.709 24.148 27.147 23.054 23.869 26.849 28.624 28.711
SSIM ↑ 0.926 0.913 0.927 0.913 0.953 0.924 0.925 0.951 0.958 0.953
LPIPS ↓ 0.110 0.113 0.110 0.0879 0.0422 0.122 0.0976 0.0453 0.0350 0.0484

Rocking & Undressing (150)
PSNR ↑ 29.026 29.265 29.325 28.898 28.133 27.992 28.979 27.996 32.139 32.312
SSIM ↑ 0.942 0.942 0.946 0.943 0.955 0.945 0.945 0.955 0.968 0.969
LPIPS ↓ 0.126 0.111 0.116 0.0976 0.0808 0.112 0.0997 0.0813 0.0453 0.0468

Swinging_1 (110)
PSNR ↑ 23.706 22.350 20.363 23.879 27.833 22.678 23.036 27.630 28.389 28.836
SSIM ↑ 0.925 0.921 0.930 0.900 0.954 0.929 0.928 0.952 0.962 0.967
LPIPS ↓ 0.109 0.122 0.118 0.0833 0.0252 0.118 0.0968 0.0266 0.0259 0.0298

Swinging_2 (120)
PSNR ↑ 24.669 24.055 22.986 24.665 27.434 24.137 24.702 27.456 29.065 29.565
SSIM ↑ 0.913 0.910 0.919 0.915 0.938 0.914 0.914 0.940 0.948 0.952
LPIPS ↓ 0.103 0.108 0.0993 0.0693 0.0317 0.109 0.0849 0.0321 0.0344 0.0443

Punching (120)
PSNR ↑ 26.737 26.054 25.440 27.256 29.338 26.261 27.008 29.410 29.931 30.394
SSIM ↑ 0.933 0.926 0.936 0.935 0.947 0.933 0.930 0.948 0.966 0.971
LPIPS ↓ 0.098 0.102 0.0961 0.0677 0.0320 0.102 0.0849 0.0317 0.0294 0.0291

Swinging & Walking (126)
PSNR ↑ 23.640 22.266 21.021 24.025 27.302 23.438 23.798 27.361 30.036 28.874
SSIM ↑ 0.932 0.928 0.937 0.918 0.954 0.936 0.935 0.953 0.968 0.971
LPIPS ↓ 0.104 0.117 0.106 0.0677 0.0280 0.111 0.0900 0.0277 0.0275 0.0276

Lifting Legs (120)
PSNR ↑ 24.387 23.906 22.612 24.960 27.572 23.403 24.653 27.624 29.060 28.715
SSIM ↑ 0.917 0.915 0.921 0.915 0.938 0.915 0.917 0.939 0.955 0.957
LPIPS ↓ 0.107 0.111 0.108 0.0741 0.0319 0.116 0.0895 0.0320 0.0348 0.0351

Stretching_1 (106)
PSNR ↑ 25.853 25.259 24.173 25.508 29.062 25.569 26.246 29.138 30.224 30.241
SSIM ↑ 0.924 0.922 0.928 0.918 0.953 0.926 0.925 0.955 0.956 0.960
LPIPS ↓ 0.106 0.105 0.109 0.0760 0.0298 0.101 0.0835 0.0288 0.0360 0.0359

Stretching_2 (200)
PSNR ↑ 26.927 25.939 24.991 26.879 30.050 26.050 26.757 29.708 30.597 30.578
SSIM ↑ 0.936 0.938 0.941 0.935 0.953 0.940 0.939 0.951 0.967 0.971
LPIPS ↓ 0.102 0.102 0.104 0.0707 0.0308 0.101 0.0819 0.0319 0.0353 0.0400

Total (1512)
PSNR ↑ 25.946 25.172 24.568 25.949 28.254 25.052 25.755 28.157 29.969 29.988
SSIM ↑ 0.929 0.925 0.933 0.924 0.950 0.930 0.929 0.950 0.962 0.963
LPIPS ↓ 0.110 0.110 0.108 0.0809 0.0428 0.111 0.0909 0.0435 0.0359 0.0413

Ours

Front back

(c) w/o Denoised Depth 
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Fig. 13. Visualization of our ablated models on the real-captured SAILOR dataset [Dong et al. 2023]. We show the initial point clouds, the regressed surface
point clouds, and the rendered RGB/depth images of novel views, under different ablation settings of Tab. 5.

In addition, we compared our geometric/rendering results with
two RGBD-based methods, i.e., GTPIFu [Dong et al. 2022] and
F4D (re-impl.) [Yu et al. 2021b], qualitatively. Fig. 12 shows two com-
parison examples on the real-captured dataset. We can see that GT-
PIFu provides detailed 3D meshes and comparable rendering results

to ours. However, while its texturing requires approximately 25.2s
on average, ours takes about 0.08s, which is significantly faster. Al-
though the F4D (re-impl.) can reconstruct some details (e.g., hair), it
may produce notable geometric errors in regions with motions (e.g.,
leg lifting), due to the unstable sliding fusion.
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Table 5. Ablation study on the THuman2.0 dataset [Yu et al. 2021b] (upper
part) and the real-captured dataset [Dong et al. 2023] (lower part). The best
and second best results are marked in bold and underline, respectively.

Methods THuman2.0 Dataset [Yu et al. 2021b]

PSNR ↑ SSIM ↑ LPIPS ×10−1 ↓ MAE×10−2 ↓
𝑤/𝑜 PRNet 32.468 0.960 0.537 0.521
𝑤/𝑜 GT SDF 34.311 0.969 0.432 0.395
𝑤/𝑜 3D Feat. 33.381 0.957 0.582 0.561

Surfel → 3D Gaussian 33.174 0.963 0.428 0.427
𝑤/𝑜 GT Depth 35.142 0.970 0.388 0.337
𝑤/𝑜 Init. Normal 34.926 0.971 0.401 0.360

𝑤/𝑜 Appearance Blending 33.588 0.962 0.522 0.469
𝑤/𝑜 Denoised Depth 34.531 0.967 0.381 0.394

Ours 35.158 0.972 0.365 0.336

Methods Real-captured Dataset [Dong et al. 2023]

PSNR ↑ SSIM ↑ LPIPS ×10−1 ↓ MAE×10−2 ↓
𝑤/𝑜 PRNet 27.766 0.946 0.544 0.732
𝑤/𝑜 GT SDF 28.733 0.951 0.521 0.750
𝑤/𝑜 3D Feat. 28.895 0.951 0.555 0.732

Surfel → 3D Gaussian 27.038 0.948 0.627 0.733
𝑤/𝑜 GT Depth 28.287 0.953 0.507 0.686
𝑤/𝑜 Init. Normal 28.846 0.951 0.491 0.735

𝑤/𝑜 Appearance Blending 28.165 0.949 0.486 0.712
𝑤/𝑜 Denoised Depth 29.168 0.950 0.481 0.652

Ours 29.334 0.952 0.449 0.680

4.3 Ablation Study
We conduct the ablation study on both the THuman2.0 dataset [Yu
et al. 2021b] (upper part) and the real-captured SAILOR [Dong et al.
2023] dataset (lower part), as shown in Tab. 5.

4.3.1 Design Choices of PRNet. We first study the effectiveness of
the proposed PRNet. Specifically, we remove the proposed PRNet
and train our model directly using the initial points P𝑖𝑛𝑖𝑡 (denoted
as “𝑤/𝑜 PRNet”). We then remove the supervision of ground truth
SDF values and use the point cloud chamfer loss to train our PRNet
(denoted as “𝑤/𝑜 GT SDF”). We also remove the Global Perception
Module and its corresponding 3D volume features from the PRNet
(denoted as “𝑤/𝑜 3D Feat.”). The first three rows in both sub-tables
of Tab. 5 show that the performances of all three ablated models
degrade on all four metrics, where “𝑤/𝑜 PRNet” and “𝑤/𝑜 3D Feat.”
generally suffer more significantly. Fig. 13(a) shows that the initial
points P𝑖𝑛𝑖𝑡 lack geometry accuracy and contain obvious noise in
rendering results, while Fig. 13(f) shows that using ground truth SDF
values as supervision helps correct local shape ambiguities (see the
foot region), also for rendering. We can also see from Fig. 13(g) that
without 3D global features of the point cloud as guidance, the points
tend to be noisy, while the rendering results are blurry and contain
artifacts. These results verify the necessity of using PRNet and SDF
supervision to regress accurate surface points and incorporate global
point cloud context features via our Global Perception Module.

4.3.2 Design Choices of SPNet. We further verify the design choices
of the proposed SPNet. First, we replace our 2D Gaussian surfels
with the original 3D Gaussians [Kerbl et al. 2023] (denoted as “Surfel
→ 3D Gaussian”), to explore the effectiveness of surfel-based ren-
dering. Second, we study the effectiveness of the depth and normal
constraints enabled by 2D Gaussian surfels. Specifically, we remove
the supervision of ground truth depth (denoted as “𝑤/𝑜 GT Depth”).
Third, we cancel the proposed residual normal (i.e., estimation of

1-view 2-view 3-view Ours (4-view) GT
Number of input views

Fig. 14. Visualization of the ablated results for the novel view, with different
numbers of input views, on the real-captured dataset [Dong et al. 2023] (up-
per row) and THuman2.0 dataset [Yu et al. 2021b] (bottom row).

Table 6. Quantitative results of texture/geometric metrics on the THuman2.0
dataset [Yu et al. 2021b] of using different numbers of input views.

Models Photometric Geometric

PSNR ↑ SSIM ↑ LPIPS ×10−1 ↓ MAE×10−2 ↓ Chamfer×10−2 ↓
1-view 31.514 0.962 0.412 0.626 10.482
2-view 31.770 0.962 0.424 0.608 2.880
3-view 33.483 0.966 0.374 0.487 1.108
5-view 35.144 0.973 0.363 0.343 1.152

Ours (4-view) 35.081 0.973 0.371 0.359 0.801

ΔR) and regress the final normal vector of a surfel directly (denoted
as “𝑤/𝑜 Init. Normal”). Fourth, we remove the Appearance Blending
B in SPNet, denoted as “𝑤/𝑜 Appearance Blending”.
The next fourth rows in both sub-tables of Tab. 5 show that

the performances of using 3D Gaussian ellipsoids instead of 2D
Gaussian surfels drop significantly, as the multi-view geometry
inconsistency of 3D Guassians can be amplified under very sparse
views. As shown in Fig. 13(e), the depth of 3D Gaussian contains
obvious local geometry ambiguities, and the corresponding rendered
image is prone to blurring or distortion. The results of the fifth and
sixth rows in both sub-tables of Tab. 5 show that removing either
the depth constraint or the normal cue can degrade the performance,
causing noisy depth and color artifacts (e.g., floating), as shown in
Fig. 13(b,d). The results of the seventh rows in both sub-tables of
Tab. 5 show that without appearance blending, the rendered image
tends to be over-smoothed, as shown in Fig. 13(h).

4.3.3 Image-conditioned Depth Denoising F𝑑 . Last, we remove the
depth denoising model F𝑑 and use the raw depths directly to train
our method (denoted as “𝑤/𝑜 Denoised Depth”). The last rows in
both sub-tables of Tab. 5 show that the performance tends to de-
crease, and we note that the results on the THuman2.0 dataset are
affected more significantly than those on the real-captured SAILOR
dataset. We speculate that our simulated raw depth D in THuman2.0
dataset [Yu et al. 2021b] contains more severe synthetic noise (e.g.,
holes). Fig. 13(c) shows that noise in the raw depth can cause ge-
ometry errors and color artifacts, mainly in the face region of the
second row, and detail loss in the white line pattern of the first row.
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Interactive GUI

Online Rendering

Fig. 15. Free-view rendering in our interactive GUI (upper row), and the
online demo (bottom row) for topology-change and multi-person settings.
Our results may have ghosting effects as indicated with white boxes.

4.4 More Results
4.4.1 Evaluation of Input View Numbers. We evaluate the texture (in
the 45-degree adjacent views of input views) and geometric results,
using different numbers (i.e., 1-to-5) of input views on the THu-
man2.0 dataset, as shown in Tab. 6. Our 4-view setup achieves the
best scores in SSIM and Chamfer metrics, while is slightly lower
than the 5-view setup in other metrics. Fig. 14 shows two examples.
While 1-view and 2-view setups suffer from severe geometry errors
and texture artifacts, the results of 3-view may exhibit incomplete
and ambiguous shapes. Hence, we chose the 4-view setup for its
lighter cost and support for near-real-time rendering.

4.4.2 Visualization of our Running System. We show our interactive
GUI and online rendering demo in Fig. 15. After loading a 4-view
RGBD frame (we follow SAILOR [Dong et al. 2023] to preprocess
the Kinect-V4 raw captured data into the RGBD inputs of our sys-
tem), our GUI can render a novel-view image at interactive speed
(12 fps) on a single RTX 3090 GPU card. Our online rendering sys-
tem can handle some topology changes (e.g., wearing scarves) and
interactions between two persons.

5 CONCLUSION
In this paper, we have proposed a novel human performance cap-
ture method, which learns a novel point-based generalizable human
(PGH) representation from very sparse live RGBD videos. The PGH
representation contains a surface implicit function for regressing
accurate surface points, and a Gaussian implicit function for param-
eterizing and rendering the radiance fields of the regressed surface
points. We have proposed a novel point-regressing network (PRNet)
with a depth-guided point cloud initialization (DPI) method, and a
novel neural blending-based surfel splatting network (SPNet), for
the implementations of the two implicit functions. Our method can
produce free-view human performance videos with high-quality
geometries and appearances in 1K resolution at 12 fps using a single
RTX 3090 GPU. Experiments on two datasets show that our method
outperforms existing human performance capture methods.

Our method does have some limitations. First, our results may ex-
hibit temporal flickers or jitters, and sometimes lose high-frequency

details (e.g., hair and hands), due to inaccurate matting and the
lack of temporal constraints. Second, our rendering results may
produce ghosting effects (e.g., dot boxes and their zoomed-in boxes
in Fig. 15) mainly due to inaccurate point cloud registration dur-
ing camera calibration. Last, our results may also exhibit abrupt
changes with ghosting effects, caused by the inconsistent changes of
view-dependent blending weights during the target view sweeping.
Incorporating powerful matting algorithms, temporal constraints,
high-frequency view encoding, and a more effective blending net-
work, into a more compact point-based 3D human representation
can be interesting for future research.
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